313 research outputs found

    Fundamental optical and magneto-optical constants of Co/Pt and CoNi/Pt multilayered films

    Get PDF
    A study has been made of the optical and magneto-optical properties of several Co/Pt and CoNi/Pt multilayered films that were fabricated by magnetron sputter deposition. Spectroscopic rotating analyzer ellipsometry and Kerr polarimetry were carried out to determine the fundamental optical and magneto-optical constants over the spectral range 320¿860 nm. The constants determined were the complex refractive index and the first-order magneto-optic Voigt parameter. A total of seven films were examined and excellent reproducibility was observed in the measured material constants. These have been used to discuss the spectral dependence of the figure-of-merit, for each material, associated with the detection of the polar Kerr effect

    The role of simulation in designing for universal access

    Get PDF
    It is known that the adoption of user-centred design processes can lead to more universally accessible products and services. However, the most frequently cited approach to user-centred design, i.e. participatory design, can be both problematic and expensive to implement., particularly over the difficulty of finding and recruiting suitable participants. Simulation aids offer a potentially cost-effective replacement or complement to participatory design. This paper examines a number of the issues associated with the use of simulation aids when designing for Universal Access. It concludes that simulation aids can play an effective role, but need to be used with due consideration over what insights they provide

    The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    Get PDF
    The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector

    Precipitation gradients drive high tree species turnover in the woodlands of eastern and southern Africa

    Get PDF
    Savannas cover one-fifth of the Earth's surface, harbour substantial biodiversity, and provide a broad range of ecosystem services to hundreds of millions of people. The community composition of trees in tropical moist forests varies with climate, but whether the same processes structure communities in disturbance-driven savannas remains relatively unknown. We investigate how biodiversity is structured over large environmental and disturbance gradients in woodlands of eastern and southern Africa. We use tree inventory data from the Socio-Ecological Observatory for Studying African Woodlands (SEOSAW) network, covering 755 ha in a total of 6780 plots across nine countries of eastern and southern Africa, to investigate how alpha, beta, and phylogenetic diversity varies across environmental and disturbance gradients. We find strong climate-richness patterns, with precipitation playing a primary role in determining patterns of tree richness and high turnover across these savannas. Savannas with greater rainfall contain more tree species, suggesting that low water availability places distributional limits on species, creating the observed climate-richness patterns. Both fire and herbivory have minimal effects on tree diversity, despite their role in determining savanna distribution and structure. High turnover of tree species, genera, and families is similar to turnover in seasonally dry tropical forests of the Americas, suggesting this is a feature of semiarid tree floras. The greater richness and phylogenetic diversity of wetter plots shows that broad-scale ecological patterns apply to disturbance-driven savanna systems. High taxonomic turnover suggests that savannas from across the regional rainfall gradient should be protected if we are to maximise the conservation of unique tree communities

    Electrodeposition of Co-Ni-MoxOy Powders: Part I. The Influence of Deposition Conditions on Powder Composition and Morphology

    Get PDF
    The Co-Ni-MoxOy powders were obtained electrochemically at a constant current density from ammonia electrolyte. Ni and Co were anomalously deposited, inducing Mo deposition, which cannot be deposited separately from aqueous solutions. The obtained Co-Ni-MoxOy powders were investigated by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electon microscope (SEM) methods. Based on the obtained experimental results, it was concluded that the particle size of deposited powders is influenced by the chemical composition of the electrolyte and current density imposed. XRD results suggested that obtained powders were of amorphous structure, although a Co3Mo compound can be formed if certain experimental conditions are applied

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF
    corecore