162 research outputs found

    The Code DYN3DR for Steady-State and Transient Analyses of Light Water Reactor Cores with Rectangular Geometry

    Get PDF
    The code DYN3D/M2 was developed for steady-state and transient analysis of reactor cores with hexagonal fuel assemblies. The new version DYN3DR contains a method for neutron kinetics solving the two group neutron diffusion equation by a nodal method for cartesian geometry. The thermal-hydraulic model FLOCAL simulating the two phase flow of coolant and the fuel rod hehaviour is used in the two versions. The fundamentals of the neutron kinetics are described. The accuracy of the code is demonstated by comparisons with the results of rod ejection benchmarks for PWR with rectangular fuel assemblies. The developed algorithm of neutron kinetics are suitable for using parallel processing. The speedup of neutronic calculation is demonstrated for a steady state solution of diffusion equation

    DYN3D/M2 - a Code for Calculation of Reactivity Transients in Cores with Hexagonal Geometry

    Get PDF
    The code DYN3D/M2 consists of a the 3-dimensional neutron kinetic model of the code HEXDYN3D and the thermohydraulic model of the code FLOCAL. The neutron kinetics of DYN3D/M2 is calculated by using a nodal expansion method (NEM) for hexagonal geometry. The developed method solves the neutron diffusion equation for two energy groups. Stationary state and transient behaviour can be calculated. By help of the code PREPAR-EC parameterizid neutron physical constants of given burnup distribution can be transferred from the MAGRU library to an input file of DYN3D/M2. The code FLOCAL consisting of a two-phase coolant flow model, a fuel rod model and a heat transfer regime map up to superheated steam is coupled with neutron kinetics by the neutron physical constants. One coolant channel per fuel assembly and additional hot channels are considered. The activities for code validation and the range of application are described

    The Code DYN3D/M2 for the Calculation of Reactivity Initiated Transients in Light Water Reactors with Hexagonal Fuel Elements -Code Manual and Input Data Description-

    Get PDF
    The code DYN3D/M2 is used for investigations of reactivity transients in cores of thermal power reactors with hexagonal fuel elements. The 3-dimensional neutron kinetics model HEXDYN3D of the code is based on a nodal expansion method for solving the two-group neutron diffusion equation. The thermo-hydraulic part FLOCAL consists of a two-phase flow model describing coolant behaviour and a fuel rod model. The fuel elements are simulated by separate coolant channels. Additional, some hot channels with power peaking factors belonging to chosen fuel elements can be considered. Several safety parameters as temperatures, DNBR and fuel enthalpy are evaluated. Macroscopic cross sections depending from the thermo-hydraulic parameters and boron concentration are input data of the code. The stationary state and transient behaviour can be analyzed. The arrangement of input data are descibed for using the different option of the code

    The 3-Dimensional Core Model DYN3D

    Get PDF
    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohydraulic part provide fuel temperatures, coolant temperatures and densities as well as boron concentrations for the calculation of feedback effects on the basis of cross section libraries generated by cell codes. DYN3D can analyze RIA initiated by moved control rods and/or perturbations of the coolant flow. Stationary and transient boundary conditions for the coolant flow, the core inlet temperatures and boron concentrations at the core inlet have to be given. For analyzing more complex transients the code DYN3D is coupled with the plant model ATHLET of the GRS. Exercises are presented of the extensive validation work for DYN3D. Some examples are shown of application of the code

    DYN3D version 3.2 - code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements - description of models and methods -

    Get PDF
    DYN3D is an best estimate advanced code for the three-dimensional simulation of steady-states and transients in light water reactor cores with quadratic and hexagonal fuel assemblies. Burnup and poison-dynamic calculations can be performed. For the investigation of wide range transients, DYN3D is coupled with system codes as ATHLET and RELAP5. The neutron kinetic model is based on the solution of the three-dimensional two-group neutron diffusion equation by nodal expansion methods. The thermal-hydraulics comprises a one- or two-phase coolant flow model on the basis of four differential balance equations for mass, energy and momentum of the two-phase mixture and the mass balance for the vapour phase. Various cross section libraries are linked with DYN3D. Systematic code validation is performed by FZR and independent organizations

    Verifikation des 3-dimensionalen Kernmodells DYN3D/M2

    Get PDF
    Es wird eine Übersicht über die wesentlichsten Ergebnisse bisheriger Arbeiten zur Verifikation des dreidimensionalen Kernmodells DYN3D/M2 für Reaktoren mit hexagonalen Brennelementen gegeben. Verifikationsuntersuchungen für stationäre und instationäre Leistungsdichteberechnung, Thermohydraulik und Brennstabmodell sowie das Gesamtmodell werden beschrieben. Die Verifikation erfolgte durch Nachrechnung von Einzeleffekttests und Experimenten an WWER-spezifischen Versuchsanlagen, Vergleich mit anderen Codes und Benchmarklösungen sowie teilweise durch Vergleich berechneter Parameter mit Betriebsmeßdaten aus KKW mit WWER. Verifikationsbedarf besteht insbesondere noch für das Gesamtmodell und die Anwendung auf den WWER-1000

    Erzeugung und Nutzung von Bibliotheken von Zwei-Gruppen-Diffusionsparametern zur Berechnung eines KWU-Konvoi-Reaktors mit dem Reaktordynamik-Programm DYN3D

    Get PDF
    Libraries of two-group neutron-diffusion parameters for a Siemens-KWU-Konvoi Pressurized Water Reactor have been generated at Forschungszentrum Rossendorf and TĂśV Bau und Betrieb GmbH by using the codes HELIOS and CASMO, respectively. The libraries have been coupled to the reactor-dynamics code DYN3D. For a generic PWR core containing MOX fuel elements, DYN3D macro-burnup calculations and the calculation of different operation states have been carried out. The results will be used for the investigation of possible accident scenarios. Reactivity coefficients calculated by DYN3D are needed for accident analyses by the 1-D thermal-hydraulic code ATHLET. Using the cross section data, more detailed analyses can be carried out by applying the coupled-code system DYN3D-ATHLET, considering 3D neutron kinetics. The comparison of the results calculated by DYN3D with two different diffusion-parameter libraries can give an idea of how uncertainties in diffusion data influence the accuracy of reactor simulation

    Validierung des gekoppelten neutronenkinetischen-thermohydraulischen Codes ATHLET/DYN3D mit Hilfe von Messdaten des OECD Turbine Trip Benchmarks

    Get PDF
    Das Vorhaben bestand in der Validierung des gekoppelten neutronenkinetisch-thermohydraulischen Programmkomplexes ATHLET/DYN3D für Siedewasserreaktoren durch Teilnahme an dem OECD/NRC Benchmark zum Turbinenschnellschluss. Das von der OECD und der amerikanischen NRC definierte Benchmark basiert auf einem Experiment mit Schließens des Turbinenschnellschlussventils, das 1977 im Rahmen einer Serie von 3 Experimenten im Kernkraftwerk Peach Bottom 2 durchgeführt wurde. Im Experiment erzeugte das Schließen des Ventils eine Druckwelle, die sich unter Abschwächung bis in den Reaktorkern ausbreitete. Die durch den Druckanstieg bewirkte Kondensation von Dampf im Reaktorkern führte zu einem positiven Reaktivitätseintrag. Der folgende Anstieg der Reaktorleistung wurde durch die Rückkopplung und das Einfahren der Regelstäbe begrenzt. Im Rahmen des Benchmarks konnten die Rechenprogramme durch Vergleiche mit den Messergebnissen und den Ergebnissen der anderen Teilnehmer an dem Benchmark validiert werden. Das Benchmark wurde in 3 Phasen oder Exercises eingeteilt. Die Phase I diente der Überprüfung des thermohydraulischen Modells für das System bei vorgegebener Leistungsfreisetzung im Kern. In der Phase II wurden 3-dimensionale Berechnungen des Reaktorkerns für vorgegebene thermohydraulische Randbedingungen durchgeführt. Die gekoppelten Rechnungen für das ausgewählte Experiment und für 4 extreme Szenarien erfolgten in der Phase III. Im Rahmen des Projekts nahm FZR an Phase II und Phase III des Benchmarks teil. Die Rechnungen für Phase II erfolgten mit dem Kernmodell DYN3D unter Berücksichtigung der Heterogenitätsfaktoren und mit 764 thermohydraulischen Kanälen (1 Kanal/Brennelement). Der ATHLET-Eingabedatensatz für die Reaktoranlage wurde von der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) übernommen und für die Rechnungen zu Phase III, die mit der parallelen Kopplung von ATHLET mit DYN3D erfolgten, geringfügig modifiziert. Für räumlich gemittelte Parameter wurde eine gute Übereinstimmung mit den Messergebnissen und den Resultaten anderer Codes erzielt. Der Einfluss der Modellunterschiede wurde mit Hilfe von Variantenrechnungen zu Phase II untersucht. So können Unterschiede in der Leistungs- und Voidverteilung in einzelnen Brennelementen auf die unterschiedliche neutronenkinetische und thermohydraulische Modellierung des Reaktorkerns zurückgeführt werden. Vergleiche zwischen ATHLET/DYN3D (parallele Kopplung) und ATHLET/QUABOX-CUBBOX (interne Kopplung) zeigen für räumlich gemittelte Parameter nur geringe Unterschiede. Abweichungen in den lokalen Parametern können im wesentlichen mit der unterschiedlichen Modellierung des Reaktorkerns erklärt werden (geringere Anzahl von modellierten Kühlkanälen, keine Berücksichtigung der Heterogenitätsfaktoren und ein anderes Siedemodell in der Rechnung mit ATHLET/QUABOX-CUBBOX). Die Rechnungen für die extremen Szenarien von Phase III zeigen die Anwendbarkeit des gekoppelten Programms ATHLET/DYN3D für die Bedingungen bei Störfällen, die weit über das Experiment hinausgehen

    Entwicklung einer Transportnäherung für das reaktordynamische Rechenprogramm DYN3D

    Get PDF
    Es wurde eine SP3-Transportmethode entwickelt, die neutronenkinetische Rechnungen für die Kerne von Leichtwasserreaktoren mit höherer Genauigkeit als die gegenwärtig in der Kernauslegung angewandten Standardmethoden auf Basis der Zweigruppendiffusionsnäherung er-laubt. Eine Verbesserung der Genauigkeit von Abbrandrechnungen und der Berechnung von Tran-sienten ist für heterogene Kerne notwendig, in denen neben UO2-Brennelementen auch Mischoxyd – Brennelemente eingesetzt werden. In einem ersten Schritt wird die in dem Rechenprogramm DYN3D verwendete Zweigruppendiffusi-onsmethode auf viele Energiegruppen erweitert. Auf der Basis von Untersuchungen zu einer optima-len Gruppenstruktur wird die Verwendung von 8-10 Energiegruppen der Neutronen als optimal erach-tet. Das Verfahren wurde anhand von stationären und transienten Rechnungen für das OECD/NEA und US NRC PWR MOX/UO2 Core Transient Benchmark verifiziert. In den nächsten Schritten erfolgte die Entwicklung und Implementierung einer SP3-Näherung in DYN3D. Dabei besteht die Möglichkeit, ein feineres Gitter im BE zu benutzen. Das Verfahren wurde zunächst durch pinweise Berechnung stationärer Zustände des obigen Benchmarks verifiziert. Untersuchungen für das Benchmarkproblem zeigen, dass das Verhältniss des 2-ten Momentes zum 0-ten Moment des Flusses klein ist. Die beiden SP3-Gleichungen können deshalb separat in iterativer Weise gelöst werden. Dies reduziert den benötigten Speicherplatz und erfordert weniger CPU-Zeit. Dieses vereinfachte Verfahren wurde deshalb ebenfalls in das Programm implementiert. Es wird ge-zeigt, dass mit diesem Verfahren eine vergleichbare Genauigkeit erreicht wird. Stabweise Rechnun-gen mit 4, 8 und 16 Energiegrupppen wurden für einen stationären Zustand des Benchmarks durch-geführt. Eine 3-dimensionale Aufgabe des Benchmarks mit Rückkopplung und Vollleistung wurde mit dem optimierten SP3-Verfahren gerechnet. A SP3 transport approximation was developed for neutron kinetic calculations of cores of light water reactors with a higher accuracy than the present standard methods of core design based on the two group diffusion approximation. An improvement of accuracy for burnup and transient calculations is required for cores loaded with UO2 and MOX fuel assemblies. In the first step, the two group diffusion method applied in the computer code DYN3D was extended to an arbitrary number of groups. Investigations for an optimal group structure have shown that a number of 8 to 10 energy groups of neutrons seems to be reasonable. The multi-group technique was verified for steady states and transients of the OECD/NEA und US NRC PWR MOX/UO2 Core Tran-sient Benchmark. In the next steps, a SP3-approximation was developed and implemented into DYN3D. The possibility of using finer meshes inside the fuel assemblies is involved in this method. The technique was veri-fied by pinwise calculations for steady states of the above mentioned benchmark. The investigations to the benchmark problem have shown that ratio of the 2nd moment of flux to the 0th moment is small. Therefore the two coupled SP3 equations can be solved separately in an iterative way. The required computer memory and the CPU time can be reduced by this technique. This sim-pler method was also implemented in the code. It is shown that the reached accuracy is comparable to accuracy of the original technique. Pinwise calculations with 4, 8 and 16 energy groups were per-formed for a steady state of this benchmark. A three-dimensional problem of the benchmark at full power and with feedback was calculated with the optimized SP3 technique. The optimized method was used for the time integration of the transient SP3 equations. The pinwise calculation of a control rod ejection was tested for a simple system and the results were compared with the diffusion solution
    • …
    corecore