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The code DYN3DIM2 was developed for 3-dimensional steady-state and transient analyses of 
reactor cores with hexagonal fuel assemblies. The neutron kinetics of the new version 
DYN3DR is based on a nodal method for the solution of the 3-dimensional Zgroup neutron 
diffusion equation for Cartesian geometry. The thermal-hydraulic model FLOCAL simulating 
the two phase flow of coolant and the fuel rod hehaviour is used in the two versions. The fun- 
damental~ for the solution of the neutron diffusion equations in DYN3DR are described. The 
3-dimensional NFiACW benchmarks for rod ejections in LWR with quadratic fuel assemblies 
were calculated and the results were compared with the published solutions. The developed al- 
gorithm for neutron kinetics are suitable for using parallel processing. The behaviour of speed- 
up versus the number of processors is demonstrated for calculations of a static neutron flux 
distribution using a workstation with 4 processors. 

Zusammenfassung 

Der Code DYN3DM2 wurde für 3-dimensionale stationäre und transiente Analysen von 
Reaktorkernen mit hexagonalen Brennelementen entwickelt. Die Neutronenkinetik der neuen 
Version DYN3DR basiert auf einer nodalen Methode zur Lösung der 3-dimensionlen 
2-Gruppen-Neutronendiffusionsgleichung für kartesische Geometrie. Das thermohydraulische 
Modell FLOCAL zur Simulation der Zwei-Phasenströmung des Kühlmittels und des Brenn- 
stabverhaltens wird in beiden Versionen verwendet. Die Grundlagen zur Lösung der Neutro- 
nendiffi~sionsgleichungen in DYN3DR werden beschrieben. Die 3-dimensionalen 
NEACRP-Benchmarks für Regelstabauswürfe in LWR's mit quadratischen Brennelementen 
wurden berechnet und die Ergebnisse mit den veröffentlichten Lösungen verglichen. Der ent- 
wickelte Algorithmus für die Neutronenkinetik ist für Parallelrechner geeignet. Das Verhalten 
des Speedup-Faktors in Abhängigkeit von der Anzahl der Prozessoren wird für die Berech- 
nung einer stationären Neutronenflußverteilung auf einer 4-Prozessor Workstation gezeigt. 
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1. Introduction 

The new version DYN3DR of the code DYN3D/M2 111, initially designed for hexagonal-z 
core analysis, has been developed for reactor cores with rectangular fuel assemblies. The neu- 
tronic part of the two code versions can be used for staedy-state and transient calculations of 
reactor cores. The neutron kinetics in bloth versions is based on the solution of the two group 
neutron diffusion equation by nodal meithods being different for the hexagonal I21 and rectan- 
gular geometry. The thermal-hydraulic module FLOCAL /3,4/ simulating the two phase flow 
of coolant and the fuel rod hehaviour is used in both versions. 

The paper describes the fundarnentals of the neutron kinetics of the rectangular option and 
demonstrates the high accuracy of the code by comparisons with rod ejection benchmarks for 
a PWR with rectangular fuel assemblies /8,9/. 

All parts of the code are written in FORTRAN-77. Since neutron kinetics is very time con- 
suming the developed algorithm's are suitable for using parallel processing. Special cornmands 
for utilizing the parallel capabilities on SUN workstations are included in the neutronic part of 
the code. The code is running on other computers too, because the parallelizing commands are 
interpreted as comments by usual compilers. The speedup of neutronic cdculations is demon- 
strated for a steady state solution of diffusion equation. 

2. Neutron Kinetic Model 

The time-dependent neutron diffusion equations for a node n are used in the following form 

with Fick's Iaw 



where 

neutron flux of energy group g 
net current of neutrons of group g 
macroscopic removal, absorption and scattering cross sections 
macroscopic fission cross section multiplied by the number of 
fission neutrons 
mean group velocities of neutrons 
density of precursors of group j 
effective fractions of delayed neutrons of group j for a fission 
with an incident neutron of group g in the node n 
decay constant for precursors of group j 
number of different precursor groups 
eigenvalue of stationary state 

The time integration over the step At is performed by using an implicit difference scheme and 
an exponential transformation technique 

@S(r, t') = exp [Qn(t' - t + At)]Yg(r, t') (3) 

That yields the following approximation for the time derivative of neutron flux in the equations 
of prompt neutrons 

d@,"(r, t )  1 
= - [ ( I  + QnAt)@g(r, t) - exp (QnAt)@g(r, t - At)] 

dt At 

The exponent Qn of the next time step can be determined from the logarithmic changes of 
fluxes within At by 

Integrating the equations for the precursors of delayed neutrons an exponential behaviour of 
neutron fluxes with exponent Qn within the time step At is assumed 

C; (r ,  t )  = C;(r, t - At)exp (-hjAt)+ 

1 - exp [ - (Xj  + Qfl)At] 1 * 
hj -t Qn 

- ßji, jvZ&&)@:t(r, t) 
keff +I 



By inserting the expressions for time derivative of neutron flux (4) and the precursor densities 
(6) into the diffusion equations ( 1 )  the following inhomogeneous equation system is obtained: 

M eQnAt 

+C hj" CJ(r, t - At)exp (-XiAt) + -@; (r, t - At) 
i.1 v i  At (7) 

with 

The equation system can be written for both energy groups in a simpler form 

-VD: (t)V@: (r ,  t )  +E: (t)@: (r, t) = S: (r,  t )  

with the source terms 

M eQnAt 

+C hj" C: (r ,  t - At)exp (-hiAt) + -@Y (r ,  t - At) 
I vi At 

@"At 
$(r ,  t )  = C:(t)@; (r ,  t )  + -@t(r,  t - At) 

v2At 

and the modified Cross sections 

The term representing the modied fission source in (9) is iterated in the outer iteration pro- 
cess. The time t appears as a parameter in the inhomogeneous equation system only. 



For the solution of the stationary equation prompt and delayed neutrons are in equilibrium. 
Thus a homogeneous equation System is obtained, because the source term consists in the fis- 
sion source for the first group and in the scattering source for the second group only. Like the 
iteration in the transient calculation a fission source iteration process is applied also for the 
solution of static equations. 

The node n being a rectangular box of volume 

is considered when the fluxes are calculated. The used method is similar to nodal methods for 
rectangular and hexagonal geometry published in /5,6,7/. The index n of the box is omitted in 
the following. The equations are written without the Parameter t for simplification also. In- 
tegration over the transverse directions y and z provides a one-dimensional equation in X 

direction. 

with 

with the transversal integrated leakage term 

In analogy the y - and z - directions are treated. The one-dimensional transverse-integrated 
neutron flux is expanded in polynomids up to the second order and exponential functions be- 
ing solutions of the homogeneous part of equations. Previously, the space coordinate X is 
transformed by 

M t h  



the one-dimensional equation (13) is dimensionsless. The flux expansion has the following 
form 

with the polynomials 

satisfying the relations 

6 ,  is Kronecker's symbol. The exponent K, is obtained from the homogeneous pwt of equa- 

Assuming that the source terms ?,(X) in equation (13) show a more smooth behaviour in the 
box the source is expanded in the polynomials only. 

The transversal leakage G(x) is approximated in the Same way from the current of the box 

and the adjacent boxes. 

Inserting these expansions into the equation (13) and using the boundarq~ conditions, far f~am- 
ple the incoming partial currents at the outer surfaces of the boxes, yield t b  coeBcients ~f 
flux expansion (18). Before the next box is calculated the outgoing partial currents are dettX- 
mined. The other directions are treaied in an malogous way. After finishing the inner iteration? 
a new fission source is cdculated by updating the polynomid coe%cients of fiuxes. The outer 
iteration is acceferated by a Chebychev extrapolation scheme. 

The nodal powers caiculated by mems of the mdd fluxes are tnnsftjrred to the ELQCäL 
code. The updated vaiues of fuel temperatures, cootant temperaturcs anel coolant densities are 
used for the determination of cross sections. An iteration betwcen neutron kuieIics and 
thermal-hyPdraulics is cmied out. Severd kinetic steps Ark are possibk within äln$ thxsma1 hy- 
draulic step At,!, . The iteratfonl; over At„, a r ~  firtished, w h e ~  convergence twith*~~ preset linitoi 
is reached, 



3. Results of Benchmark Calculations 

In order to assess the different codes developed for transient analysis of reactor cores the so- 
called NEACRP benchmarks were defined 181. The PWR problems were calculated by 
DYN3DR and the obtained results were compared with the published reference solutions 191. 
The thermal-hydraulic model for the transient calculations in /10/ was specified similar to the 
NEACRP benchmarks in 181- The version of FiLOCAL slightly modified for the calculations in 
/10/ is also used here. 

The problems Al, A2, BI, B2, C1 and C2 consist in rod ejections of central or peripheral rods 
at hot Zero power (HZP) and full power (FP) conditions. 

Short description of the 6 cases: 

Al: Ejection of the central rod at HZP 

A2: Ejection of the central rod at FP 

BI: Ejection of a peripheral rod in octant geometry at HZP 

B2: Ejection of a peripheral rod in octant geometry at FP 

Cl: Ejection of one peripheral rod at HZP 

C2: Ejection of one peripheral rod at FP 

The nominal power of the reactor is 2775 MW. There are 157 fuel assemblies and 64 reflector 
elements each with a side length of 20 cm in the core (see fig. 3.1). The core including the ax- 
i d  reflector is divided into 18 layers of different heights as given in the specifications of the 
problems /8/. The part of a fuel element in a layer is described by one node. In all cases the 
ejection time of rods is 0.1 s. The comparisons of DYN3DR with other codes and the refer- 
ence solution for some Parameters can be Seen in tables 3.1 - 3.9. The given results of the oth- 
er codes published in 191 show the range of results. The tables contain the value of the 
published reference solutions and the deviations of the results obtained by the different codes. 
The reference solution was generated by the PANTHER code using 4 nodes per assembly in 
one layer. The generation of a mathematically exact reference solution is still Open. 

Table 3.1 shows the critical boron concentration of the initial steady states. The nodal power 
peaking factor of steady state solutions is listed in table 3.2. Table 3.3 gives the values for the 
static reactivity of the ejected rod. The positive reactivity insertions lead to an excursion of nu- 
clear power reduced by the negative feedback. The results for the time of power peak and the 
power peak vdue can be Seen in tables 3.4 and 3.5, respectively. The values of the power at 
the end of calculation ( t = 5 s ) are shown in table 3.6. The core averaged Doppler tempera- 
tures at t = 5 s are contained in table 3.7. The fuel centerline temperatures calculated with 
FLOGAL by an extrapolation using the average temperatures of the fuel layers are somewhat 
higher than the reference in ai16 casec (see table 3.8). The coolant exit temperatures are about 
0.6 K high= than the reference values. The differentes can be explained by the used procedure 
for water properties because the Same deviations were obtained for the steady state of the FP 



of the FP cases. The coolant exit temperatures and the deviations are listed in table 3.9 for the 
final calculation time. 

Fig 3.A1.1 shows the power peak in the case A l  compared to the reference solution, 
fig 3.A1.2 displays the power curves up to t = 5 s. The behaviour of averaged Doppler tem- 
perature can be Seen in fig 3.A1.3. The maximum fuel centerline temperature T F , ~  is depicted 
in figure 3.A1.4. The larger deviation seems to be caused by the mentioned extrapolation 
method. The Same method was also applied for calculating the surface f ~ ~ e l  temperat~re T F ~ .  
The Doppler temperature TD is given by 

The figure 3.A1.5 shows the coolant exit temperatures, which are overestimated in DYN3DR 
in the static and transient results caused by the mentioned calculation of thermophysical prop- 
erties. Similar notation is used for the curves of cases A2, BI ,  B2, Cl, and C2. The most in- 
teresting cases C1 and C2 describing the ejection of a peripheral rod show significant changes 
of the radial flux shape. Fig. 3.C1.6 and 3.C2.6 show the asymmetric flux shape in axial layer 
13 along the horizontal traverse (see fig 3.1) at the time of power maximum. A good agree- 
ment can be stated for the HZP case in fig. 3.C1.6. Fig. 3.C2.6 shows small deviations of 
about 5 % for the FP case in nodes near to the lower end of control rods. 

As demonstrated by the tables, the results provided by DYN3DR are within the limits of the 
other codes. The time dependence of different quantities during the transient predicted by 
DYN3DR is ciose to the assumed reference solution in 191. 

4. Parallel Processing 

First tests of the neutronic algorithm of DYN3DR were carried out by using the multiproces- 
sor capabilities of a SUN-workstation SPARC 101514 with ri maximum of 4 processors. Th0 
code running on single processor machines could be translated by parallelizing compiler Op- 
tions without any changes of the source. That is possible since special commands for pardlei 
DO-loops are interpreted as comments by other compilers, 

Fig 4.1 shows the speedup of a 3 - dimensional steady state calculation in comparison to the 
theoretical curve, The algorithm gives identical results independent on the numbers of: proces- 
sors. The saving of CPU time for the static calculation is irnportant for the padlekation 0f 

the transient calculation. The relatively small deviation to the theoretical curve in fig. 4.1 en- 
courages to use a larger number of processors. The parailelizsition oE the thermal-hydrauli~ 
code FLOCAL using parallel channel calculation is possible too, 



5. Conclusions 

The neutron kinetics of the rectangular code DYN3DR is briefly described. The results for the 
PWR rod ejection benchmarks are compared with the reference solution and published results 
of other codes. The good agreement with the reference solutions proves the code to be useful 
for transient calculations in PWR with rectangular fuel assemblies. The saving of CPU time by 
parallel processing is demonstrated for a steady state neutronic calculation. Further work on 
parallelization will be done for the transient neutronic calculation and the thermo-hydraulic 
code FLOCAL. 
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Tables 

Table 3.1 : LWR CO= TRANSIENT BENCHMARKS 
PWR: Reference Value of Critical Boron Concentration and Deviations in (%) 

[I Case I Al 1 A2 I B1 I B2 I C1 I C2 1 
I I I I I I 

Reference (ppm) 1 567.70 1 1160.60 1 1254.60 1 1189.40 / 1135.30 1 1160.60 ! 

11 CESAR 1 3.576 

PANBOX 1 -0.51 1 

QUABOXICUBB OX 0.458 

QUANDRY- EN 

THYDE-NEU 

PRORIA -4 1.695 

LWRSIM 3.329 

SIMTRAN 0.194 

PANTHER 0.740 

Table 3.2: LWR CORE TRANSIENT BENCHMARKS 
PWR: Stealdy State Solution: Reference Value of Nodal Power Peaking Factor 
and Deviations (%) 

Case 1 1 .  B1 B2 C1 



Table 3.3: LWR CORE TRANSIENT BENCHMARKS 
PWR: Reference Value of Reactivity Release and Deviations (%) 

1 Case 1 Al A2 1 B1 I B2 Cl  I C2 I m 1 I I I I 

Reference (pcm) I 822.00 1 90.00 1 831.00 1 99.00 1 958.0 1 78.00 

Table 3.4: LWR CORE TRANSIENT BENCHMARKS 
PWR: Time of Power Maximum (Reference) and Deviations (%) 

II I I I I 

Reference (s) 11 0.560 1 0.100 1 0.520 1 0.120 1 0.270 1 0.100 , 

BOREASITRAB 

CESAR 
- 

COCCINELLE 

PANBOX 

QUANDRY- EN 

THYDE-NEU 

PRORIA 

SIMTRAN 

ARROTTA 

PANTHER 



Table 3.5: LWR CORE T W S I E N T  BENCHMARKS 
PWR: Reference of Power Maximum (% of PI2775 MW) and Deviations (%) 

I Case BI I CI 

11 PANBOX 11 -12.383 

11 PRORIA 11 -73.028 

SIMTRAN -28.329 

ARROTTA 

1 1  PANTHER 11 -23.749 



Table 3.6: LWR CORE TRANSIENT BENCHMARKS 
PWR: Reference of Final Power (% of PI2775 M W )  and Deviations (96) 

4 

Case Al A2 B1 

Refer~nce (i) 19-600. 103.50Q 32.000 

OKAPI(s) 1 -1.020 1 -0.676 1 -4.688 

11 COCCINELLE 11 

THYDE-NEU 

PRORIA 26.020 0.193 

SIMTRAN 6.122 0.097 4.688 

ARROTTA 

PANTHER -0.510 -0.097 1.563 

DYN3DR 2.791 0.095 4.653 
d 



Table 3.7: LWR CORE TRANSIENT BENCHMARKS 
Reference of Final Core Averaged Doppler Temperature and Deviations 
in (%) 

I Case CI c 2  I 

Table 3.8: LWR CORE TRANSIENT BENCHMARKS 
Reference of Maximum Fuel Centerline Temperature and Deviations (%) 



Table 3.9: LWR CORE TWVSIENT BENCIfIMARKS 
Reference of Final Coolant Outlet Temperature and Deviations (5%) 



Radial Reflector Element = Fuel Assembly 
Control Assembly @ = Central or Peripheral CA to be Ejected 
Horizontal Traverse 

Fig. 3.1 : Core Map of the PWR Benchmark Problems 
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Fig. 4.1: Speedup of Steady State Neutronic Calculation in 
DYN3DR Using Diffmnt Number of Processors 


	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 
	Seite 35 
	Seite 36 
	Seite 37 
	Seite 38 
	Seite 39 
	Seite 40 

