1,023 research outputs found

    A preliminary list of the ants of Utah

    Get PDF
    journal articleThe following list of the ants of Utah was prepared from specimens and data now in the Biology Department of the University of Utah. This list is by no means complete, yet it is representative of practically all parts of the state. A few specimens in the collection date back to 1902, and all of these specimens and numerous other specimens in the collection were identified by Professor W. M. Wheeler. Since 1937 the authors have made collections in all parts of the state in an effort to obtain material for this paper. In addition, Mr. Grundmann has made intensive collections and a study of the ants of Salt Lake County as thesis material for a Master's Degree

    Field-induced transition of the magnetic ground state from A-type antiferromagnetic to ferromagnetic order in CsCo2Se2

    Full text link
    We report on the magnetic properties of CsCo2_2Se2_2 with ThCr2_2Si2_2 structure, which we have characterized through a series of magnetization and neutron diffraction measurements. We find that CsCo2_2Se22_2 undergoes a phase transition to an antiferromagnetically ordered state with a N\'eel temperature of TN≈T_{\rm N} \approx 66 K. The nearest neighbour interactions are ferromagnetic as observed by the positive Curie-Weiss temperature of Θ≈\Theta \approx 51.0 K. We find that the magnetic structure of CsCo2_2Se2_2 consists of ferromagnetic sheets, which are stacked antiferromagnetically along the tetragonal \textit{c}-axis, generally referred to as A-type antiferromagnetic order. The observed magnitude of the ordered magnetic moment at TT = 1.5 K is found to be only 0.20(1)μBohr\mu_{\rm Bohr}/Co. Already in comparably small magnetic fields of μ0HMM\mu_0 H_{MM}(5K) ≈\approx 0.3 T, we observe a metamagnetic transition that can be attributed to spin-rearrangements of CsCo2_2Se2_2, with the moments fully ferromagnetically saturated in a magnetic field of μ0HFM\mu_0 H_{\rm FM}(5K) ≈\approx 6.4 T. We discuss the entire experimentally deduced magnetic phase diagram for CsCo2_2Se2_2 with respect to its unconventionally weak magnetic coupling. Our study characterizes CsCo2_2Se2_2, which is chemically and electronically posed closely to the AxFe2−ySe2A_xFe_{2-y}Se_2 superconductors, as a host of versatile magnetic interactions

    Effect of deconfinement on resonant transport in quantum wires

    Full text link
    The effect of deconfinement due to finite band offsets on transport through quantum wires with two constrictions is investigated. It is shown that the increase in resonance linewidth becomes increasingly important as the size is reduced and ultimately places an upper limit on the energy (temperature) scale for which resonances may be observed.Comment: 6 pages, 6 postscript files with figures; uses REVTe

    Study of the Negative Magneto-Resistance of Single Proton-Implanted Lithium-Doped ZnO Microwires

    Get PDF
    The magneto-transport properties of single proton-implanted ZnO and of Li(7\%)-doped ZnO microwires have been studied. The as-grown microwires were highly insulating and not magnetic. After proton implantation the Li(7\%) doped ZnO microwires showed a non monotonous behavior of the negative magneto-resistance (MR) at temperature above 150 K. This is in contrast to the monotonous NMR observed below 50 K for proton-implanted ZnO. The observed difference in the transport properties of the wires is related to the amount of stable Zn vacancies created at the near surface region by the proton implantation and Li doping. The magnetic field dependence of the resistance might be explained by the formation of a magnetic/non magnetic heterostructure in the wire after proton implantation.Comment: 6 pages with 5 figure

    Surface modification of Co-doped ZnO nanocrystals and its effects on the magnetic properties

    Get PDF
    A series of chemically prepared Co2+-doped ZnO colloids has been surface modified either by growing shells of ZnSe or by the in situ encapsulation in poly styrene . The surface modification effects using these two distinct chemical strategies on the magnetic properties of the nanocrystals were probed by electron paramagnetic resonance EPR . Structural characterization by means of x-ray diffraction and transmission electron microscopy gave no evidence of second phase formation within the detection limits of the used equipment. The EPR analysis was carried out by simulations of the powderlike EPR spectra. The results confirm that in the core of these nanocrystals Co was incorporated as Co2+, occupying the Zn2+ sites in the wurtzite structure of ZnO. Additionally we identify two Co signals stemming from the nanocrystals’ shell. The performed surface modifications clearly change the relative intensity of the EPR spectrum components, revealing the core and shell signals

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R−1.01R^{-1.01} (not R−2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R−1.79R^{-1.79} (R−0.7R^{-0.7}), and that the eccitonic gap sclaes as R−0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Overview of molecular typing methods for outbreak detection and epidemiological surveillance

    Get PDF
    Typing methods for discriminating different bacterial isolates of the same species are essential epidemiological tools in infection prevention and control. Traditional typing systems based on phenotypes, such as serotype, biotype, phage-type, or antibiogram, have been used for many years. However, more recent methods that examine the relatedness of isolates at a molecular level have revolutionised our ability to differentiate among bacterial types and subtypes. Importantly, the development of molecular methods has provided new tools for enhanced surveillance and outbreak detection. This has resulted in better implementation of rational infection control programmes and efficient allocation of resources across Europe. The emergence of benchtop sequencers using next generation sequencing technology makes bacterial whole genome sequencing (WGS) feasible even in small research and clinical laboratories. WGS has already been used for the characterisation of bacterial isolates in several large outbreaks in Europe and, in the near future, is likely to replace currently used typing methodologies due to its ultimate resolution. However, WGS is still too laborious and time-consuming to obtain useful data in routine surveillance. Also, a largely unresolved question is how genome sequences must be examined for epidemiological characterisation. In the coming years, the lessons learnt from currently used molecular methods will allow us to condense the WGS data into epidemiologically useful information. On this basis, we have reviewed current and new molecular typing methods for outbreak detection and epidemiological surveillance of bacterial pathogens in clinical practice, aiming to give an overview of their specific advantages and disadvantages

    Overview of molecular typing methods for outbreak detection and epidemiological surveillance

    Get PDF
    Typing methods for discriminating different bacterial isolates of the same species are essential epidemiological tools in infection prevention and control. Traditional typing systems based on phenotypes, such as serotype, biotype, phage-type, or antibiogram, have been used for many years. However, more recent methods that examine the relatedness of isolates at a molecular level have revolutionised our ability to differentiate among bacterial types and subtypes. Importantly, the development of molecular methods has provided new tools for enhanced surveillance and outbreak detection. This has resulted in better implementation of rational infection control programmes and efficient allocation of resources across Europe. The emergence of benchtop sequencers using next generation sequencing technology makes bacterial whole genome sequencing (WGS) feasible even in small research and clinical laboratories. WGS has already been used for the characterisation of bacterial isolates in several large outbreaks in Europe and, in the near future, is likely to replace currently used typing methodologies due to its ultimate resolution. However, WGS is still too laborious and time-consuming to obtain useful data in routine surveillance. Also, a largely unresolved question is how genome sequences must be examined for epidemiological characterisation. In the coming years, the lessons learnt from currently used molecular methods will allow us to condense the WGS data into epidemiologically useful information. On this basis, we have reviewed current and new molecular typing methods for outbreak detection and epidemiological surveillance of bacterial pathogens in clinical practice, aiming to give an overview of their specific advantages and disadvantages.</p
    • …
    corecore