385 research outputs found

    Structure of ternary additive hard-sphere fluid mixtures

    Full text link
    Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.Comment: 11 pages, including 8 figures; A minor change; accepted for publication in PR

    Propofol Directly Increases Tau Phosphorylation

    Get PDF
    In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology

    Diffusion of impurities in a granular gas

    Full text link
    Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are obtained by solving the Boltzmann--Lorentz equation by means of the Chapman--Enskog method. In the first order in the density gradient of impurities, the diffusion coefficient DD is determined as the solution of a linear integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper, we evaluate DD up to the second order in the Sonine expansion and get explicit expressions for DD in terms of the restitution coefficients for the impurity--gas and gas--gas collisions as well as the ratios of mass and particle sizes. To check the reliability of the Sonine polynomial solution, analytical results are compared with those obtained from numerical solutions of the Boltzmann equation by means of the direct simulation Monte Carlo (DSMC) method. In the simulations, the diffusion coefficient is measured via the mean square displacement of impurities. The comparison between theory and simulation shows in general an excellent agreement, except for the cases in which the gas particles are much heavier and/or much larger than impurities. In theses cases, the second Sonine approximation to DD improves significantly the qualitative predictions made from the first Sonine approximation. A discussion on the convergence of the Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.

    The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios

    Get PDF
    The accumulation of amyloid-beta (Abeta) and tau aggregates is a pathological hallmark of Alzheimer's disease. Both polypeptides form fibrillar deposits, but several lines of evidence indicate that Abeta and tau form toxic oligomeric aggregation intermediates. Depleting such structures could thus be a powerful therapeutic strategy. We generated a fragment of tau (His-K18DeltaK280) that forms stable, toxic, oligomeric tau aggregates in vitro. We show that (-)-epigallocatechin gallate (EGCG), a green tea polyphenol that was previously found to reduce Abeta aggregation, inhibits the aggregation of tau K18DeltaK280 into toxic oligomers at ten- to hundred-fold substoichiometric concentrations, thereby rescuing toxicity in neuronal model cells

    Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways

    Get PDF
    Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD) and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or susceptibility to AD neurodegeneration. Previously, it has been shown that there is a reciprocal relationship between the local inflammatory response and neurofibrillary lesions. Numerous independent studies have reported that inflammatory responses may contribute to the development of tau pathology and thus accelerate the course of disease. It has been shown that various cytokines can significantly affect the functional and structural properties of intracellular tau. Notwithstanding, anti-inflammatory approaches have not unequivocally demonstrated that inhibition of the brain immune response can lead to reduction of neurofibrillary lesions. On the other hand, our recent data show that misfolded tau could represent a trigger for microglial activation, suggesting the dual role of misfolded tau in the Alzheimer's disease inflammatory cascade. On the basis of current knowledge, we can conclude that misfolded tau is located at the crossroad of the neurodegenerative and neuroinflammatory pathways. Thus disease-modified tau represents an important target for potential therapeutic strategies for patients with Alzheimer's disease

    HECTD2, a candidate susceptibility gene for Alzheimer's disease on 10q

    Get PDF
    Background: Late onset Alzheimer's disease (LOAD) is a neurodegenerative disorder characterised by the deposition of amyloid plaques and neurofibrillary tangles in the brain and is the major cause of dementia. Multiple genetic loci, including 10q, have been implicated in LOAD but to date, with the exception of APOE, the underlying genes have not been identified. HECTD2 maps to 10q and has been implicated in susceptibility to human prion diseases which are also neurodegenerative conditions associated with accumulation of misfolded host proteins. In this study we test whether the HECTD2 susceptibility allele seen in prion disease is also implicated in LOAD.Methods: DNA from 320 individuals with Alzheimer's disease and 601 controls were genotyped for a HECTD2 intronic tagging SNP, rs12249854 (A/T). Groups were further analysed following stratification by APOE genotype.Results: The rs12249854 minor allele (A) frequency was higher (5.8%) in the Alzheimer's disease group as compared to the controls (3.9%), however, this was not statistically significant (P = 0.0668). No significant difference was seen in minor allele frequency in the presence or absence of the APOE epsilon 4 allele.Conclusion: The common haplotypes of HECTD2, tagged by rs12249854, are not associated with susceptibility to LOAD

    Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer’s disease

    Get PDF
    peer reviewedMolecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. IMAGING OF AD CHARACTERISTIC CHANGES BY microPET: The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimer's disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases

    Molecular Implication of PP2A and Pin1 in the Alzheimer's Disease Specific Hyperphosphorylation of Tau

    Get PDF
    Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD) related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2A(T55α)) is a major Tau phosphatase in vivo, which contributes to its final phosphorylation state. We use NMR spectroscopy to determine the dephosphorylation rates of phospho-Tau by this major brain phosphatase, and present site-specific and kinetic data for the individual sites including the pS202/pT205 AT8 and pT231 AT180 phospho-epitopes.We demonstrate the importance of the PR55/Bα regulatory subunit of PP2A within this enzymatic process, and show that, unexpectedly, phosphorylation at the pT231 AT180 site negatively interferes with the dephosphorylation of the pS202/pT205 AT8 site. This inhibitory effect can be released by the phosphorylation dependent prolyl cis/trans isomerase Pin1. Because the stimulatory effect is lost with the dimeric PP2A core enzyme (PP2A(D)) or with a phospho-Tau T231A mutant, we propose that Pin1 regulates the interaction between the PR55/Bα subunit and the AT180 phospho-epitope on Tau.Our results show that phosphorylation of T231 (AT180) can negatively influence the dephosphorylation of the pS202/pT205 AT8 epitope, even without an altered PP2A pool. Thus, a priming dephosphorylation of pT231 AT180 is required for efficient PP2A(T55α)-mediated dephosphorylation of pS202/pT205 AT8. The sophisticated interplay between priming mechanisms reported for certain Tau kinases and the one described here for Tau phosphatase PP2A(T55α) may contribute to the hyperphosphorylation of Tau observed in AD neurons

    Tau Reduction Does Not Prevent Motor Deficits in Two Mouse Models of Parkinson's Disease

    Get PDF
    Many neurodegenerative diseases are increasing in prevalence and cannot be prevented or cured. If they shared common pathogenic mechanisms, treatments targeting such mechanisms might be of benefit in multiple conditions. The tau protein has been implicated in the pathogenesis of diverse neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Tau reduction prevents cognitive deficits, behavioral abnormalities and other pathological changes in multiple AD mouse models. Here we examined whether tau reduction also prevents motor deficits and pathological alterations in two mouse models of PD, generated by unilateral striatal injection of 6-hydroxydopamine (6-OHDA) or transgene-mediated neuronal expression of human wildtype α-synuclein. Both models were evaluated on Tau+/+, Tau+/– and Tau–/– backgrounds in a variety of motor tests. Tau reduction did not prevent motor deficits caused by 6-OHDA and slightly worsened one of them. Tau reduction also did not prevent 6-OHDA-induced loss of dopaminergic terminals in the striatum. Similarly, tau reduction did not prevent motor deficits in α-synuclein transgenic mice. Our results suggest that tau has distinct roles in the pathogeneses of AD and PD and that tau reduction may not be of benefit in the latter condition

    Mice with Mutation in Dynein Heavy Chain 1 Do Not Share the Same Tau Expression Pattern with Mice with SOD1-Related Motor Neuron Disease

    Get PDF
    Due to controversy about the involvement of Dync1h1 mutation in pathogenesis of motor neuron disease, we investigated expression of tau protein in transgenic hybrid mice with Dync1h1 (so-called Cra1/+), SOD1G93A (SOD1/+), double (Cra1/SOD1) mutations and wild-type controls. Total tau-mRNA and isoforms 0, 1 and 2 N expression was studied in frontal cortex, hippocampus, spinal cord and cerebellum of presymptomatic and symptomatic animals (age 70, 140 and 365 days). The most significant differences were found in brain cortex and cerebellum, but not in hippocampus and spinal cord. There were less changes in Cra1/SOD1 double heterozygotes compared to mice harboring single mutations. The differences in total tau expression and in profile of its isoforms between Cra1/+ and SOD1/+ transgenics indicate a distinct pathogenic entity of these two conditions
    corecore