13 research outputs found

    Simheuristics to support efficient and sustainable freight transportation in smart city logistics

    Get PDF
    La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es centren en la incorporació de dades en temps real i en la creació de models de negoci col·laboratius en el transport urbà de mercaderies, considerant l’augment dels habitants en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de presa de decisions en aquest context es poden formular com a problemes d’optimació combinatòria. Tot i que hi ha diferents enfocaments de resolució exacta per a trobar solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat de prendre decisions instantànies pel que fa a l’encaminament de vehicles, la programació o la situació d’instal·lacions, fa que aquestes metodologies no s’apliquin a la pràctica. A causa de la seva capacitat per a trobar solucions pseudoòptimes en gairebé temps real, els algorismes metaheurístics reben una atenció creixent dels investigadors i professionals com a alternatives eficients i fiables per a resoldre nombrosos problemes d’optimació en la creació de la logística de les ciutats intel·ligents. Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament la complexitat dels sistemes més realistes. En assumir entrades (inputs) i restriccions de problemes deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconvenients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics per a explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta tesi defineix i investiga l’ús d’algorismes simheurístics com el mètode més adequat per a resoldre problemes d’optimació derivats de la logística de les ciutats. Alguns algorismes simheurístics s’apliquen a una sèrie de problemes complexos, com la recollida de residus urbans, els problemes de disseny de la cadena de subministrament integrada i els models de transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena de subministrament. A més de les discussions metodològiques i la comparació d’algorismes desenvolupats amb els referents de la bibliografia acadèmica, es mostra l’aplicabilitat i l’eficiència dels algorismes simheurístics en diferents casos de gran escala.Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores, estos sistemas se centran en la incorporación de datos en tiempo real y la creación de modelos empresariales colaborativos en el transporte urbano de mercancías, al tiempo que consideran el aumento del número de habitantes en las ciudades, la creciente complejidad de las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas. Muchos de los problemas de toma de decisiones en este contexto se pueden formular como problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño, además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento, la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudoóptimas casi en tiempo real, los algoritmos metaheurísticos reciben cada vez más atención por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver numerosos problemas de optimización en la creación de la logística de ciudades inteligentes. A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan completamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos inconvenientes integrando cualquier tipo de simulación en procesos metaheurísticos con el fin de considerar la incertidumbre inherente en la mayoría de las aplicaciones de la vida real. Esta tesis define e investiga el uso de algoritmos simheurísticos como método adecuado para resolver problemas de optimización que surgen en la logística de ciudades inteligentes. Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada y modelos de transporte innovadores relacionados con la colaboración horizontal entre los socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación de los algoritmos desarrollados con los de referencia de la bibliografía académica, se muestra la aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a gran escala.Smart city logistics are a crucial factor in the creation of efficient and sustainable urban transportation systems. Among other factors, they focus on incorporating real-time data and creating collaborative business models in urban freight transportation concepts, whilst also considering rising urban population numbers, increasingly complex customer demands, and highly competitive markets. This allows transportation planners to minimize the monetary and environmental costs of freight transportation in metropolitan areas. Many decision-making problems faced in this context can be formulated as combinatorial optimization problems. While different exact solving approaches exist to find optimal solutions to such problems, their complexity and size, in addition to the need for instantaneous decision-making regarding vehicle routing, scheduling, or facility location, make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal solutions in almost real time, metaheuristic algorithms have received increasing attention from researchers and practitioners as efficient and reliable alternatives in solving numerous optimization problems in the creation of smart city logistics. Despite their success, traditional metaheuristic techniques fail to fully represent the complexity of most realistic systems. By assuming deterministic problem inputs and constraints, the uncertainty and dynamism experienced in urban transportation scenarios are left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrating any type of simulation into metaheuristic-driven processes to account for the inherent uncertainty in most real-life applications. This thesis defines and investigates the use of simheuristics as a method of first resort for solving optimization problems arising in smart city logistics concepts. Simheuristic algorithms are applied to a range of complex problem settings including urban waste collection, integrated supply chain design, and innovative transportation models related to horizontal collaboration among supply chain partners. In addition to methodological discussions and the comparison of developed algorithms to state-of-the-art benchmarks found in the academic literature, the applicability and efficiency of simheuristic frameworks in different large-scaled case studies are shown

    Modelling human network behaviour using simulation and optimization tools: the need for hybridization

    Get PDF
    The inclusion of stakeholder behaviour in Operations Research / Industrial Engineering (OR/IE) models has gained much attention in recent years. Behavioural and cognitive traits of people and groups have been integrated in simulation models (mainly through agent-based approaches) as well as in optimization algorithms. However, especially the influence of relations between different actors in human networks is a broad and interdisciplinary topic that has not yet been fully investigated. This paper analyses, from an OR/IE point of view, the existing literature on behaviour-related factors in human networks. This review covers different application fields, including: supply chain management, public policies in emergency situations, and Internet-based human networks. The review reveals that the methodological approach of choice (either simulation or optimization) is highly dependent on the application area. However, an integrated approach combining simulation and optimization is rarely used. Thus, the paper proposes the hybridization of simulation with optimization as one of the best strategies to incorporate human behaviour in human networks and the resulting uncertainty, randomness, and dynamism in related OR/IE models.Peer Reviewe

    A simheuristic algorithm for time-dependent waste collection management with stochastic travel times

    Get PDF
    A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain

    Simheuristics to support efficient and sustainable freight transportation in smart city logistics

    Get PDF
    La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es centren en la incorporació de dades en temps real i en la creació de models de negoci col·laboratius en el transport urbà de mercaderies, considerant l'augment dels habitants en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de presa de decisions en aquest context es poden formular com a problemes d¿optimació combinatòria. Tot i que hi ha diferents enfocaments de resolució exacta per a trobar solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat de prendre decisions instantànies pel que fa a l'encaminament de vehicles, la programació o la situació d'instal·lacions, fa que aquestes metodologies no s'apliquin a la pràctica. A causa de la seva capacitat per a trobar solucions pseudoòptimes en gairebé temps real, els algorismes metaheurístics reben una atenció creixent dels investigadors i professionals com a alternatives eficients i fiables per a resoldre nombrosos problemes d'optimació en la creació de la logística de les ciutats intel·ligents. Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament la complexitat dels sistemes més realistes. En assumir entrades (inputs) i restriccions de problemes deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconvenients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics per a explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta tesi defineix i investiga l'ús d'algorismes simheurístics com el mètode més adequat per a resoldre problemes d'optimació derivats de la logística de les ciutats. Alguns algorismes simheurístics s'apliquen a una sèrie de problemes complexos, com la recollida de residus urbans, els problemes de disseny de la cadena de subministrament integrada i els models de transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena de subministrament. A més de les discussions metodològiques i la comparació d'algorismes desenvolupats amb els referents de la bibliografia acadèmica, es mostra l'aplicabilitat i l'eficiència dels algorismes simheurístics en diferents casos de gran escala.Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores, estos sistemas se centran en la incorporación de datos en tiempo real y la creación de modelos empresariales colaborativos en el transporte urbano de mercancías, al tiempo que consideran el aumento del número de habitantes en las ciudades, la creciente complejidad de las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas. Muchos de los problemas de toma de decisiones en este contexto se pueden formular como problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño, además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento, la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudoóptimas casi en tiempo real, los algoritmos metaheurísticos reciben cada vez más atención por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver numerosos problemas de optimización en la creación de la logística de ciudades inteligentes. A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan completamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos inconvenientes integrando cualquier tipo de simulación en procesos metaheurísticos con el fin de considerar la incertidumbre inherente en la mayoría de las aplicaciones de la vida real. Esta tesis define e investiga el uso de algoritmos simheurísticos como método adecuado para resolver problemas de optimización que surgen en la logística de ciudades inteligentes. Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada y modelos de transporte innovadores relacionados con la colaboración horizontal entre los socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación de los algoritmos desarrollados con los de referencia de la bibliografía académica, se muestra la aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a gran escala.Smart city logistics are a crucial factor in the creation of efficient and sustainable urban transportation systems. Among other factors, they focus on incorporating real-time data and creating collaborative business models in urban freight transportation concepts, whilst also considering rising urban population numbers, increasingly complex customer demands, and highly competitive markets. This allows transportation planners to minimize the monetary and environmental costs of freight transportation in metropolitan areas. Many decision-making problems faced in this context can be formulated as combinatorial optimization problems. While different exact solving approaches exist to find optimal solutions to such problems, their complexity and size, in addition to the need for instantaneous decision-making regarding vehicle routing, scheduling, or facility location, make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal solutions in almost real time, metaheuristic algorithms have received increasing attention from researchers and practitioners as efficient and reliable alternatives in solving numerous optimization problems in the creation of smart city logistics. Despite their success, traditional metaheuristic techniques fail to fully represent the complexity of most realistic systems. By assuming deterministic problem inputs and constraints, the uncertainty and dynamism experienced in urban transportation scenarios are left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrating any type of simulation into metaheuristic-driven processes to account for the inherent uncertainty in most real-life applications. This thesis defines and investigates the use of simheuristics as a method of first resort for solving optimization problems arising in smart city logistics concepts. Simheuristic algorithms are applied to a range of complex problem settings including urban waste collection, integrated supply chain design, and innovative transportation models related to horizontal collaboration among supply chain partners. In addition to methodological discussions and the comparison of developed algorithms to state-of-the-art benchmarks found in the academic literature, the applicability and efficiency of simheuristic frameworks in different large-scaled case studies are shown

    Simheuristics to support efficient and sustainable freight transportation in smart city logistics

    No full text
    La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es centren en la incorporació de dades en temps real i en la creació de models de negoci col·laboratius en el transport urbà de mercaderies, considerant l’augment dels habitants en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de presa de decisions en aquest context es poden formular com a problemes d’optimació combinatòria. Tot i que hi ha diferents enfocaments de resolució exacta per a trobar solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat de prendre decisions instantànies pel que fa a l’encaminament de vehicles, la programació o la situació d’instal·lacions, fa que aquestes metodologies no s’apliquin a la pràctica. A causa de la seva capacitat per a trobar solucions pseudoòptimes en gairebé temps real, els algorismes metaheurístics reben una atenció creixent dels investigadors i professionals com a alternatives eficients i fiables per a resoldre nombrosos problemes d’optimació en la creació de la logística de les ciutats intel·ligents. Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament la complexitat dels sistemes més realistes. En assumir entrades (inputs) i restriccions de problemes deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconvenients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics per a explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta tesi defineix i investiga l’ús d’algorismes simheurístics com el mètode més adequat per a resoldre problemes d’optimació derivats de la logística de les ciutats. Alguns algorismes simheurístics s’apliquen a una sèrie de problemes complexos, com la recollida de residus urbans, els problemes de disseny de la cadena de subministrament integrada i els models de transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena de subministrament. A més de les discussions metodològiques i la comparació d’algorismes desenvolupats amb els referents de la bibliografia acadèmica, es mostra l’aplicabilitat i l’eficiència dels algorismes simheurístics en diferents casos de gran escala.Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores, estos sistemas se centran en la incorporación de datos en tiempo real y la creación de modelos empresariales colaborativos en el transporte urbano de mercancías, al tiempo que consideran el aumento del número de habitantes en las ciudades, la creciente complejidad de las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas. Muchos de los problemas de toma de decisiones en este contexto se pueden formular como problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño, además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento, la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudoóptimas casi en tiempo real, los algoritmos metaheurísticos reciben cada vez más atención por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver numerosos problemas de optimización en la creación de la logística de ciudades inteligentes. A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan completamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos inconvenientes integrando cualquier tipo de simulación en procesos metaheurísticos con el fin de considerar la incertidumbre inherente en la mayoría de las aplicaciones de la vida real. Esta tesis define e investiga el uso de algoritmos simheurísticos como método adecuado para resolver problemas de optimización que surgen en la logística de ciudades inteligentes. Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada y modelos de transporte innovadores relacionados con la colaboración horizontal entre los socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación de los algoritmos desarrollados con los de referencia de la bibliografía académica, se muestra la aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a gran escala.Smart city logistics are a crucial factor in the creation of efficient and sustainable urban transportation systems. Among other factors, they focus on incorporating real-time data and creating collaborative business models in urban freight transportation concepts, whilst also considering rising urban population numbers, increasingly complex customer demands, and highly competitive markets. This allows transportation planners to minimize the monetary and environmental costs of freight transportation in metropolitan areas. Many decision-making problems faced in this context can be formulated as combinatorial optimization problems. While different exact solving approaches exist to find optimal solutions to such problems, their complexity and size, in addition to the need for instantaneous decision-making regarding vehicle routing, scheduling, or facility location, make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal solutions in almost real time, metaheuristic algorithms have received increasing attention from researchers and practitioners as efficient and reliable alternatives in solving numerous optimization problems in the creation of smart city logistics. Despite their success, traditional metaheuristic techniques fail to fully represent the complexity of most realistic systems. By assuming deterministic problem inputs and constraints, the uncertainty and dynamism experienced in urban transportation scenarios are left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrating any type of simulation into metaheuristic-driven processes to account for the inherent uncertainty in most real-life applications. This thesis defines and investigates the use of simheuristics as a method of first resort for solving optimization problems arising in smart city logistics concepts. Simheuristic algorithms are applied to a range of complex problem settings including urban waste collection, integrated supply chain design, and innovative transportation models related to horizontal collaboration among supply chain partners. In addition to methodological discussions and the comparison of developed algorithms to state-of-the-art benchmarks found in the academic literature, the applicability and efficiency of simheuristic frameworks in different large-scaled case studies are shown

    Enhancing and extending the classical GRASP framework with biased randomisation and simulation

    No full text
    Greedy Randomised Adaptive Search Procedure (GRASP) is one of the best-known metaheuristics to solve complex combinatorial optimisation problems (COPs). This paper proposes two extensions of the typical GRASP framework. On the one hand, applying biased randomisation techniques during the solution construction phase enhances the efficiency of the GRASP solving approach compared to the traditional use of a restricted candidate list. On the other hand, the inclusion of simulation at certain points of the GRASP framework constitutes an efficient simulation–optimisation approach that allows to solve stochastic versions of COPs. To show the effectiveness of these GRASP improvements and extensions, tests are run with both deterministic and stochastic problem settings related to flow shop scheduling, vehicle routing, and facility location

    Combining simulation with a GRASP metaheuristic for solving the permutation flow-shop problem with stochastic processing times

    No full text
    Greedy Randomized Adaptive Search Procedures (GRASP) are among the most popular metaheuristics for the solution of combinatorial optimization problems. While GRASP is a relatively simple and efficient framework to deal with deterministic problem settings, many real-life applications experience a high level of uncertainty concerning their input variables or even their optimization constraints. When properly combined with the right metaheuristic, simulation (in any of its variants) can be an effective way to cope with this uncertainty. In this paper, we present a simheuristic algorithm that integrates Monte Carlo simulation into a GRASP framework to solve the permutation flow shop problem (PFSP) with random processing times. The PFSP is a well-known problem in the supply chain management literature, but most of the existing work considers that processing times of tasks in machines are deterministic and known in advance, which in some real-life applications (e.g., project management) is an unrealistic assumption

    Combining simulation with a GRASP metaheuristic for solving the permutation flow-shop problem with stochastic processing times

    No full text
    Greedy Randomized Adaptive Search Procedures (GRASP) are among the most popular metaheuristics for the solution of combinatorial optimization problems. While GRASP is a relatively simple and efficient framework to deal with deterministic problem settings, many real-life applications experience a high level of uncertainty concerning their input variables or even their optimization constraints. When properly combined with the right metaheuristic, simulation (in any of its variants) can be an effective way to cope with this uncertainty. In this paper, we present a simheuristic algorithm that integrates Monte Carlo simulation into a GRASP framework to solve the permutation flow shop problem (PFSP) with random processing times. The PFSP is a well-known problem in the supply chain management literature, but most of the existing work considers that processing times of tasks in machines are deterministic and known in advance, which in some real-life applications (e.g., project management) is an unrealistic assumption
    corecore