1,858 research outputs found
Simultaneous dual-element analyses of refractory metals in naturally occurring matrices using resonance ionization of sputtered atoms
The combination of secondary neutral mass spectrometry (SNMS) and resonance ionization spectroscopy (RIS) has been shown to be a powerful tool for the detection of low levels of elemental impurities in solids. Drawbacks of the technique have been the laser-repetition-rate-limited, low duty cycle of the analysis and the fact that RIS schemes are limited to determinations of a single element. These problems have been addressed as part of an ongoing program to explore the usefulness of RIS/SNMS instruments for the analysis of naturally occurring samples. Efficient two-color, two-photon (1+1) resonance ionization schemes were identified for Mo and for four platinum-group elements (Ru, Os, Ir, and Re). Careful selection of the ionization schemes allowed Mo or Ru to be measured simultaneously with Re, Os, or Ir, using two tunable dye lasers and an XeCl excimer laser. Resonance frequencies could be switched easily under computer control, so that all five elements can be rapidly analyzed. In situ measurements of these elements in metal grains from five meteorites were conducted. From the analyses, estimates of the precision and the detection limit of the instrument were made. The trade-off between lower detection limits and rapid multielement RIS analyses is discussed
The Role of Perceived Control in Customer Value Cocreation and Service Recovery Evaluation
Treating customers as passive recipients of service recovery does not account for their naturally elevated desire for control following a service failure. Focusing on value cocreation by customers in service recovery, this study conceptualizes three types of customer perceived control in service recovery: process control, decision control, and information control. Using both a field study and a controlled experiment to test the conceptual model, this study reveals various ways service firms can engage customers in service recovery to enhance their service experience. The results show that customers are motivated to exert influence on and regain control over service recovery because they care not only about the economic gains rendered by control but also about their social self-esteem in their relationship with a service firm. An investigation of the interaction effects among the three types of control reveals either complementary or substitution effects between different pairings of the three types of control on customers\u27 justice evaluations of service recovery and repurchase intentions. The findings provide managers with new guidance on developing and implementing successful service recovery programs
Quality assessment of 3D building data
Three-dimensional building models are often now produced from lidar and photogrammetric data. The quality control of these models is a relevant issue both from the scientific and practical points of view. This work presents a method for the quality control of such models. The input model (3D building data) is co-registered to the verification data using a 3D surface matching method. The 3D surface matching evaluates the Euclidean distances between the verification and input data-sets. The Euclidean distances give appropriate metrics for the 3D model quality. This metric is independent of the method of data capture. The proposed method can favourably address the reference system accuracy, positional accuracy and completeness. Three practical examples of the method are provided for demonstration.This project has been funded by Ordnance Survey Research, the research and development department of the Ordnance Survey of Great Britain, which is gratefully acknowledged. The first author, Devrim Akca, was formerly with the Institute of Geodesy and Photogrammetry of ETH Zurich, SwitzerlandPublisher's Versio
Calculation of the Phase Behavior of Lipids
The self-assembly of monoacyl lipids in solution is studied employing a model
in which the lipid's hydrocarbon tail is described within the Rotational
Isomeric State framework and is attached to a simple hydrophilic head.
Mean-field theory is employed, and the necessary partition function of a single
lipid is obtained via a partial enumeration over a large sample of molecular
conformations. The influence of the lipid architecture on the transition
between the lamellar and inverted-hexagonal phases is calculated, and
qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.
A New Approach to Evidence Synthesis in Traumatic Brain Injury: A Living Systematic Review.
Living systematic reviews (LSRs) are online summaries of health care research that are updated as new research becomes available. This new development in evidence synthesis is being trialled as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) project. We will develop and sustain an international TBI knowledge community that maintains up-to-date, high quality LSRs of the current state of knowledge in the most important questions in TBI. Automatic search updates will be run three-monthly, and newly identified studies incorporated into the review. Review teams will seek to publish journal updates at regular intervals, with abridged updates available more frequently online. Future project stages include the integration of LSR and other study findings into "living" clinical practice guidance. It is hoped these efforts will go some way to bridging current temporal disconnects between evidence, guidelines, and practice in TBI
Fatigue testing of a proximal femoral hip component
Published versio
Obesity: A Biobehavioral Point of View
Excerpt: If you ask an overweight person, “Why are you fat?’, you will, almost invariably, get the answer, “Because 1 eat too much.” You will get this answer in spite of the fact that of thirteen studies, six find no significant differences in the caloric intake of obese versus nonobese subjects, five report that the obese eat significantly less than the nonobese, and only two report that they eat significantly more
A stacking-fault based microscopic model for platelets in diamond
We propose a new microscopic model for the planar defects in
diamond commonly called platelets. This model is based on the formation of a
metastable stacking fault, which can occur because of the ability of carbon to
stabilize in different bonding configurations. In our model the core of the
planar defect is basically a double layer of three-fold coordinated
carbon atoms embedded in the common diamond structure. The properties of
the model were determined using {\it ab initio} total energy calculations. All
significant experimental signatures attributed to the platelets, namely, the
lattice displacement along the direction, the asymmetry between the
and the directions, the infrared absorption peak
, and broad luminescence lines that indicate the introduction of
levels in the band gap, are naturally accounted for in our model. The model is
also very appealing from the point of view of kinetics, since naturally
occurring shearing processes will lead to the formation of the metastable
fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200
- …