110 research outputs found

    Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus <it>Leucocoprinus gongylophorus </it>that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth.</p> <p>Results</p> <p>We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in <it>Acromyrmex echinatior </it>leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade.</p> <p>Conclusions</p> <p>Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by <it>Acromyrmex </it>leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.</p

    Determining the association between adipokine expression in multiple tissues and phenotypic features of non-alcoholic fatty liver disease in obesity

    Get PDF
    OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is an obesity-associated disease, and in obesity adipokines are believed to be involved in the development of NAFLD. However, it is still not clear whether adipokines in the liver and/or adipose tissues can be related to the development of specific characteristics of NAFLD, such as steatosis and inflammation. We aimed to address this question by simultaneously examining the adipokine expression in three tissue types in obese individuals. METHODS: We enrolled 93 severely obese individuals with NAFLD, varying from simple steatosis to severe non-alcoholic steatohepatitis. Their expression of 48 adipokines in the liver, visceral and subcutaneous adipose tissue (SAT) was correlated to their phenotypic features of NAFLD. We further determined whether the correlations were tissue specific and/or independent of covariates, including age, sex, obesity, insulin resistance and type 2 diabetes (T2D). RESULTS: The expression of adipokines showed a liver-and adipose tissue-specific pattern. We identified that the expression of leptin, angiopoietin 2 (ANGPT2) and chemerin in visceral adipose tissue (VAT) was associated with different NAFLD features, including steatosis, ballooning, portal and lobular inflammation. In addition, the expression of tumor necrosis factor (TNF), plasminogen activator inhibitor type 1 (PAI-1), insulin-like growth factor 1 (somatomedin C) (IGF1) and chemokine (C-X-C motif) ligand 10 (CXCL10) in the liver tissue and the expression of interleukin 1 receptor antagonist (IL1RN) in both the liver and SAT were associated with NAFLD features. The correlations between ANGPT2 and CXCL10, and NAFLD features were dependent on insulin resistance and T2D, but for the other genes the correlation with at least one NAFLD feature remained significant after correcting for the covariates. CONCLUSIONS: Our results suggest that in obese individuals, VAT-derived leptin and chemerin, and hepatic expression of TNF, IGF1, IL1RN and PAI-1 are involved in the development of NAFLD features. Further, functional studies are warranted to establish a causal relationship

    BAAC 2000.028

    No full text
    De voorgenomen realisering van een aantal woningen en een appartementencomplex op het Wielewaalterrein betreft een gebied dat tot de oudste bewoningskern van de stad behoort. De voorgenomen realisering van nieuwe bebouwing brengt verstoringen in het bodemarchief met zich mee. Het doel van de voorbereiding is het in kaart brengen van de mogelijk aan te treffen sporen, de historisch(geograrische) structuren, de aandachtspunten binnen het onderzoek en de planvorming van het uiteindelijke onderzoek. In dit vooronderzoek is het gehele aandachtsgebied van de te ontwikkelen plannen behandeld

    Canine sternal force-displacement relationship during cardiopulmonary resuscitation

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
    corecore