261 research outputs found

    Fabrication of the Ni[3]Al-based alloy formed by spark plasma sintering of VKNA powders

    Get PDF
    The material based on Ni[3]Al intermetallic has been obtained from the industrial powder of a VKNA type by the method of spark plasma sintering. Materials sintering was conducted at the temperature of 1100 °Х, compacting pressure of 20 MPa, and during soaking time equal to 5 minutes. The heating rate of samples amounted to 50 and 200 °Х/min. It has been established that the material obtained by sintering at the rate of 50 °Х/min possesses a maximum value of density (5.93 g/cm{3}) and a maximum level of bending strength (~ 400 MPa)

    Isabelle/DOF: Design and Implementation

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record17th International Conference, SEFM 2019 Oslo, Norway, September 18–20, 2019DOF is a novel framework for defining ontologies and enforcing them during document development and evolution. A major goal of DOF is the integrated development of formal certification documents (e. g., for Common Criteria or CENELEC 50128) that require consistency across both formal and informal arguments. To support a consistent development of formal and informal parts of a document, we provide Isabelle/DOF, an implementation of DOF on top of the formal methods framework Isabelle/HOL. A particular emphasis is put on a deep integration into Isabelleñs IDE, which allows for smooth ontology development as well as immediate ontological feedback during the editing of a document. In this paper, we give an in-depth presentation of the design concepts of DOFñs Ontology Definition Language (ODL) and key aspects of the technology of its implementation. Isabelle/DOF is the first ontology language supporting machine-checked links between the formal and informal parts in an LCF-style interactive theorem proving environment. Sufficiently annotated, large documents can easily be developed collabo- ratively, while ensuring their consistency, and the impact of changes (in the formal and the semi-formal content) is tracked automatically.IRT SystemX, Paris-Saclay, Franc

    Growth of detector-grade CZT by Traveling Heater Method (THM): An advancement

    Get PDF
    In this present work we report the growth of Cd{sub 0.9}Zn{sub 0.1}Te doped with In by a modified THM technique. It has been demonstrated that by controlling the microscopically flat growth interface, the size distribution and concentration can be drastically reduced in the as-grown ingots. This results in as-grown detector-grade CZT by the THM technique. The three-dimensional size distribution and concentrations of Te inclusions/precipitations were studied. The size distributions of the Te precipitations/inclusions were observed to be below the 10-{micro}m range with the total concentration less than 10{sup 5} cm{sup -3}. The relatively low value of Te inclusions/precipitations results in excellent charge transport properties of our as-grown samples. The ({mu}{tau}){sub e} values for different as-grown samples varied between 6-20 x 10{sup -3} cm{sup 2}/V. The as-grown samples also showed fairly good detector response with resolution of {approx}1.5%, 2.7% and about 3.8% at 662 keV for quasi-hemispherical geometry for detector volumes of 0.18 cm{sup 3}, 1 cm{sup 3} and 4.2 cm{sup 3}, respectively

    Sintering mechanisms of metals under electric currents

    Get PDF
    International audienceThis chapter concerns the microscopic mechanisms involved in densifi-cation of metallic powders submitted to high electric current pulses like in the SPS technique. Because metallic systems exhibit high electric conductivity, focus is made on evaluating the sensitivity of the densification mechanisms on the current. Thus, a first part is devoted to the influence of electric currents on elementary met-allurgical phenomena (diffusion, plasticity
) which are involved in densification. Then, after recalling the micromechanical models of densification, the SPS kinetics is described, and analyzed in the framework of these models, with emphasis on the role of the current. Finally, theoretical and experimental investigations on electrically induced mechanisms at the scale of the powder particle contacts, are presented: dielectric breakdown of oxide layers, arcs and plasma, Joule overheating, electroplasticity and electromigration. Then, conclusions are drawn on the most probable mechanisms, and on the role of the current

    Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing

    Get PDF
    Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1
    • 

    corecore