454 research outputs found

    Effect of light polarization on plasma distribution and filament formation

    Full text link
    We show that, for 200 fs light pulses at 790 nm, the formation of filaments is strongly affected by the laser light polarization . Filamentation does not exist for a pure circularly polarized light, propagating in vacuum before focusing in air, while there is no difference for focusing the light in air or vacuum for linearly polarized light.Comment: 4pages 2 figure

    Observation of Changes in the Atomic and Electronic Structure of Single-Crystal YBa₂Cu₃O₆.₆ Accompanying Bromination

    Get PDF
    To ascertain the role of bromination in the recovery of superconductivity in underdoped YBa2Cu3O6+y (YBCO), we have performed polarized multiple-edge x-ray-absorption fine structure (XAFS) measurements on normal (y~0.6) and brominated (Br/Cu~1/30, y~0.6) single crystals with superconducting transitions at 63 and 89 K, respectively. The brominated sample becomes strongly heterogeneous on an atomic length scale. Approximately one-third of YBCO is locally decomposed yet incorporated as a well-ordered host lattice as nanoscale regions. The decomposed phase consists of heavily distorted domains with an order not following that of the host lattice. Structurally, these domains are fragments of the YBCO lattice that are discontinued along the Cu(1)-O(1) containing planes. The local structure is consistent with the cluster expansions: Y-O(2,3)8-Cu(2)8-..., Ba-O8-Cu(2)4Cu(1)2-..., and Cu-O4... about the Y, Ba, and Cu sites. Interatomic distances and Debye-Waller factors for the expansions were determined from fits to Y K-, Ba L3-, and Cu K-edge XAFS data at room temperature. Br K-edge data reveal that Br does not enter substitutionally or interstitially into the perfect YBCO lattice. However, Br does occupy the Cu(1) sites in a nanofragment of the YBCO lattice, forming Br-O(4)-Ba-Cu2(1)Cu(2)-... nanoclusters. From polarized measurements these nanoclusters were found to be almost randomly oriented with respect to the host crystal, and probably are the nucleus of the decomposed phase. This heterogeneity brings about the unusual structural and electronic properties of the normal state previously reported in the literature. Implications on for diffraction, transport, and magnetization measurements are discussed

    Parallel atomic force microscopy with optical interferometric detection

    Get PDF
    Cataloged from PDF version of article.We have developed an atomic force microscope that uses interferometry for parallel readout of a cantilever array. Each cantilever contains a phase sensitive diffraction grating consisting of a reference and movable set of interdigitated fingers. As a force is applied to the tip, the movable set is displaced and the intensity of the diffracted orders is altered. The order intensity from each cantilever is measured with a custom array of siliconphotodiodes with integrated complementary metal–oxide–semiconductor amplifiers. We present images from five cantilevers acquired in the constant height mode that reveal surface features 2 nm in height. The interdigital method for cantilever array readout is scalable, provides angstrom resolution, and is potentially simpler to implement than other methods. © 2001 American Institute of Physic

    Algorithm to Diagnose Leaks or Blockages Downstream of the Secondary Air Injection Reaction (SAIR) Pressure Sensor

    Get PDF
    A control module and method for an exhaust system of an engine can include a secondary air intake (SAI) pressure module that monitors SAI pressure. An accumulation module can accumulate an SAI string length based on the monitored SAI pressure. A calculation module can determine an average SAI string length based on the accumulated SAI string length. A determination module can determine an operating characteristic of the vehicle exhaust based on the average SAI string length

    Guiding neutral atoms around curves with lithographically patterned current-carrying wires

    Get PDF
    Laser-cooled neutral atoms from a low-velocity atomic source are guided via a magnetic field generated between two parallel wires on a glass substrate. The atoms bend around three curves, each with a 15-cm radius of curvature, while traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is achieved with a current density of 3*10^4 A/cm^2 in the 100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page

    High-resolution imaging of elastic properties using harmonic cantilevers

    Get PDF
    We present a micromachined scanning probe cantilever, in which a specific higher-order flexural mode is designed to be resonant at an exact integer multiple of the fundamental resonance frequency. We have fabricated such cantilevers by reducing the stiffness of the third order flexural mode relative to the fundamental mode, and we have demonstrated that these cantilevers enable sensing of non-linear mechanical interactions between the atomically sharp tip at the free end of the cantilever and a surface with unknown mechanical properties in tapping-mode atomic force microscopy. Images of surfaces with large topographical variations show that for such samples harmonic imaging has better resolution than standard tapping-mode imaging. © 2003 Elsevier B.V. All rights reserved

    Harmonic cantilevers for nanomechanical sensing of elastic properties

    Get PDF
    We present a micromachined scanning probe cantilever, in which a specific higher order flexural mode is designed to be resonant at an exact integer multiple of the fundamental resonance frequency. We have demonstrated that such cantilevers enable sensing of nonlinear mechanical interactions between the atomically sharp tip at the free end of the cantilever and a surface with unknown mechanical properties in tapping-mode atomic force microscopy. © 2003 IEEE
    • …
    corecore