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ABSTRACT

The double-stream interaction in a solid-state plasma is
analyzed for s lavered structure where the two charge-carrying streams
are in adiacent layers, with the stream in one layer assumed to be
stationzry. The theory has been developed assuming that no external

magnetic field is applied.
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ing from an idealized model, the effects of finite tem-
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perature, particle collisions, transverse ac velocities, and material
losses are considered. Each problem is first investigated separately
and then the effect of combining these parameters is discussed.

Anzlysis of the idealized one-dimensional model with a single
drift velocity for all carriers predicts high gain for a frequency of
1 GHz te 10 um in wavelength, for commercially available semiconductors.

o

finite temperature, particle collisions, and transverse

oy

The effects o
ac velecities change the results of the idealized model drastically.

The velocity spresd introduced by the randomizing effects of tempera-
ture reduces the gain below useful levels for temperatures above about
35°K in germanium. This limits operation of practical devices tc very
low temperatures. Particle collisions add severe damping at frequencies
below about 300 GHz in most semiconductors, e.g., germanium and indium
zntimonide. Transverse ac velocities reduce the gain below useful levels
unless the conductivity has a large anisotropy. Transverse to longitu-
dinal conductivity ratios of at least 1:100 are required to obtain gain

values comparable te the one-dimensional model. The total effect of tem-
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pevature, collisions, and transverse ac velocities is to impose such
stringent requirements on the materials and operating conditions that

it ig reasonable to conclude that space-charge interactions in solids
without an external magnetic field are not likely to result in practical
devices.,

Gain may not be possible in the submillimeter or shorter wave-
length region even with a strong dc¢ magnetic field. If the effect of
the magnetic field is only to cause a conductivity anisotropy, i.e.,
"focusing" as in electron beam devices, then practical devices cannot
be built. The fields required become very large (~100 kG) and can only
be preduced in a well-equipped laboratory.

Finally, additional problems are to be expected with energy
coupling from the sample and material fabrication. The space-charge
ﬁavelength becomes so short at the submillimeter wavelengths that
techniques are presently not available to manufacture efficient output
couplers., The very small space-charge wavelength similarly requires
wery uniform surfaces for the layered structure, and fabrication
problems are significant.

In conclusion, it appears that the initially promising result
for high-frequency sclid-state devices based on space-charge inter-—
actions, and in particular the double-stream interaction, is fallacious.
A more detailed inwvestigation has shown that the idealized one-dimen-
sional model is not 2 wvalid appreach to the analysis of space-charge

interactions in sclids.
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I. INTRODUCTION

1]

The purpose of thisiproject is the investigation of gain
mechanisms in solid-state materials for generating coherent radiation
in the ultraviolet and X-ray regions. |

This report summarizes the conclusions reached during a maijor

phase of this study. The initial proposal on space-charge interactions

n solids at ultraviclet and X-ray frequencies was made on the basis

e

of a2 simplified plasms model. A more thorough analysis indicated that
serious difficulties were to be expected due to bound electron sbsorp-
tion and the many possible energy levels in the solid at the higher
frequencies. It was then proposed that the intersction be investigated
in the infrared where electrén effects are not importsmt. This would
serve to verify the basicAinteraction mechanism which could then be
studied in more .detail at the higher frequencies. Further study of

the proposed interaction showed, however, that even in this more favor-
able frequency range, a good understanding_of space-chdrge interactions

n sclids was not readily obtainsble. It was found that there is an

fodo

incomplete understanding of space-charge waves in solids even at micro-

wave Ireqguencies; for example, there has been no conclusive experimental
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en of space—@hargé interactions in sclids at any frequency.

For these reasons, it was decided that a thozough analysis of the double-
stream interaction was first necesssary in the microwave and infrared
frequencies. This report summarizes the resulis of this study. Since

it alsc marks the completion of a major phase of the project, slight




repetition of previously discussed topics has been permitted for the
sake of ccmpleteness,

Space-charge interactions in solids have received considerable
attention over the past several years, and many proposals have appeared
in the literature for devices that are essentially analogues of the
more familiar electron-beam intevactions. Most of these devices have
been proposed for use in the microwave region. However, as mentioned
previously, very few conclusive experimental results have been obtained.
At present, there is considerable uncertainty as to the origin of de-
tected oscillations from solid-state materiélsa Since the ultimate
success c¢f an ultraviclet or X~ray interaction depends on the success-
ful verification of a2 space-charge interaction in a solid, the more
general approach is well justified.

It will, thérefore9 be the purpose of this report to investi-
gate the feasibility of realizing practical devices from space-charge
interactions in solid-state plasmas, and to try to increase the under-
standing of these interazcticns. To facilitate the analysis, a particu~—
lar configuration will be selected which gives good results with the
idealized model and which can be experimentally constructed. The
analysis will be carried out for the double-stream interaction in a
layered structure where the two streams are in the adjacent layers.
This configuration permits more f£lexibility than the hole-electron
plasma in a2 single material. In addition, the effect of layer thick-
ness on each stream can be studiedo The theory will be developed

zssuming that no externsal magentic field is applied. Large magnetic




fields require bulky electromagnets which limit the useful application

of any proposed device. The analysis has been confined to a frequency

range extending from microwaves up to the infrared, because the space-

charge interaction sppears particularly well suited for these frequen-

cies, and material properties are available for use in making numerical
calculations.

A thorough analysis of a solid-state plasma is quite complicated
because several different effects must be included in addition to the
basic interaction mechanism: the temperature of the particles adds a
velocity distribution to the drifting or stationary carriers which tends
to randomize the velocity and decrease the gain, particle collisions
with the lattice and between the particles add loss and must be con-
sidered, and the carriers in the solid are contained by the boundaries
of the material but are otherwise able to move in directions transverse
to the desired drift. One possible method of attacking the problem
would be to try to include all effects at the beginning of the analysis
and srrive at some very general and very complicated equations. This
method has the advantage of being sble to "explain" all effects from
one derivation. The disadvantage is that the final result is usually
so complex that it defies interpretation. Because one purpose of this
work is to try to add te the understanding of space-charge interactions,
a moxe applicable methed has been selected. The problems of temperas-—
ture, particle collisions, and transverse velocities will be considered
separately and the combinéd results will be discussed sfter the effects

of each have been understocd. This apprcach makes it possible to sepa-




rately investigate theoretical methods for analyzing these difficult
problems. It is alsoc easier to compare the results to the work of
other authors, since very often analyses are presented which completely
ignore one or more of these effects.,

The general approach of this papexr will be to develop the
idealized model and then to show how the added physical properties of a
semiconducting sclid affect the propecsed interaction méchanismn First,
in Chapter 1I, some general preperties of semiconductors will be dis~
cussed which fit the proposed plasma model. Experimental results of
other authors will be mentioned which tend to verify the plasma nature
of a semiconducting solid. Then, in Chapters III and IV the sﬁace—
charge interaction mechanisms are described which lead to the configura-
tion tc be anslyzed. The layered structure is then discussed and re-
sults are presented for an idealized model which assumes a uniform drift
velocity for all of the carriers.

Chapters V and VI discuss the effects of temperature, particle
cellisions, and transverse velocities. This is the particularly siéni—
ficant porticn of this paper because it is here that the conclusion is
reached that space-charge interactions without an external magnetic
field are not iikely to result in practical devices.

Chapter VII considers the more practical problem of how to
couple the energy out of the sample if 3 space-charge interaction can
be found. Materisl properties and fabrication methods are discussed in
Chapters VIII asnd IX and some of the problems to be expected in experi-

menital work sre described.




Although much of the analysis has been done for a particular
configuration of two layers, it should be emphasized that this does
not restrict all of the topics discussed to this particular problem.
The discussions presented on temperature effects, transverse veloci-
ties, energy coupling, and material properties have very broad appli-
cability to the analysis of space-charge waves in solids. The approxi-
mate computer methods developed for solving problems with a finite
velocity distribution due to femperature should prove useful in any
analysis involving drifting carriers and space charge. The discussion
of losses due to transverse ac velocities would apply to any space-
charge interaction. The focusing effect of a dc magnetic field is
also briefly mentioned. The coupling of energy out cof the sample has
been considered assuming that space-charge bunching is present. No
particular sample configuration is needed for this discussion. Finally,
material properties are described which fit a general plasma behavior

that would be of interest for all space-charge interactions.




II. INTRODUCTION TO SOLID STATE PLASMAS

As discussed in the introductory chapter, the analysis to be
used in this paper assumes a plasma model for a semiconducting solid.
The purpose of this chapter is to discuss, and hopefully to justify,
this assumption. First, some very general properties of gas, sémi—
conductor, and metal plasmas will be compared and some of the basic
experimental results will be stated which illustrate the plasma proper-
ties of these materials. Then in the following éections, a brief re-
view of the pertinent semiconductor theory will be given with emphasis
on the particular properties necessary to the analysis of gain mechan-

isms.

2.1. General Properties of Gas, Semiconductor, and Metal Plasmas

The usual idea of & plasma is a collection of electrons and
positively charged ions in the form of a hot gas. However, many effects
in solids, both metals and semiconductors, can also be described in
terms of a plasma. Table I gives a comparison of some of the pertinent
properties of the different kinds of plasmas.-

The principal differences between gaseous, semiconductor, and
metal plasmas are as follows:

1. In the gaseous plasma the densities are low and the kinetic

temperatures are high, so that a Boltzmann distribution law

* R. Bowers and M. C. Steele, "Plasma Effects in Solids," Proceedings
IEEE, Vol. 52, October 1964, p. 1106,
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will give a good description of the particle distributions.

2., In a semiconductor, the electrons and ions are replaced by
electrons and holes moving through the stationary lattice.,
The masses of the particles are now the effective masses,
which take into account the effect of the crystal lattice
on the particle motion. The particle densities are higher
and the temperatures are lower so that often Fermi-Dirac
statistics need to be used.

3. Metals have even higher particle densities and here again

the kinetic temperatures are very high.

2.2. Experimental Observations of Plasmas in Solids

Since the plasma description of a semiconductor will be of par-
ticular interest in the following chapters, we will now take a very
brief look at some of the experimentally observed effects which substan-
tiate the plasma model.

Among the first of the plasma-type effects to be observed was
the propagation of helicon waves. These waves correspond to the more
familiar whistler waves in the ionosphere and have the characteristic
helical motion of the electric field vector as the wave propagates. A.
Libchaber and R. Veilex? demonstrated their propagation at 10 GHz in

indium antimonide. Further work has since been done on their observa-

2 A. Libchaber and R. Veilex, '"Wave Propagation in a Gyromagnetic Solid
Conductor: Helicon Waves," Physical Review, Vol. 127, August 1962,
pp. 774-=776.




tions at different frequencies and also with standing helicon waves.

Another plasma phenomenon which has been observed and studied
in solids is the propagation of Alfven waves. G. A. Williams® observed
the propagation of Alfven waves in bismuth using an interference tech-
nique.

Further verification of the plasma nature of semiconductors is
the well known ''pinch effect." The pinch effect has been studied in
gases as a way to contain high temperature plasmas. The effect has also
been observed in semiconductors. Self pinching occurs when the magnetic
preséure exceeds the kinetic pressure. In indium antimonide at room
temperatures, the critical current is ébout one ampere. Experimentally,
the magnetic pinch can be seen either by destructive testipg, where the
current becomes so high that it locally melts the sample,”4or by micro-
wave reflection off of select portions of the material.

This has been but a brief survey and there are other types of
effects such as spin waves and cyclotron wave resonances, but the results

mentioned should be sufficient to show the validity of the plasma model.

2.3. Properties of Semiconductors

With the basic ideas as briefly outlined above, a more detailed

description of the semiconductor properties is in order. The intention

3 G. A. Williams, Bulletin of the American Physical Society, Vol. 7,
1962, p. 409.

4 B. Ancker-Jchnscn and J. E. Drummond, "Thermal Pinching in Electron~Hole
Plasma," Physical Review, Vol. 131, September 1963, pp. 1961-1965.




here is not to give an all-inclusive discussion, but rather to elucidate
some of the more important concepts that have to be used in a plasma de-
scription of a semiconducting solid.

The basic principles underlying the physics of semiconducting
materials have been achieved through the concept of energy bands. Two
fundamentally different approaches may be used, both of which lead to
the energy band picture of a solid. The first approach is known as
the free-atom or tight binding of electrons, and the second is the free-
electron or loose binding method. The free-electron approach is the
more appropriate to the plasma model interpretation and, therefore, will

be used in the following discussion.

The Drude-Lorentz Free-Electron Model. Even before the energy-

band theory was developed, the basic ideas of the free-electron model
were first embodied in what is now known as the Drude-Lorentz theory,
first proposed for metals. Although the Drude-Lorentz theory does not
require the energy band concept, much of its results are still valid
and the energy band model can be thought of as an extension to describe
additional phenomena. For this reason, it is worthwhile to take a leok
at the predictions of this theory.

In the Drude-Lorentz plasma model, the ions are considered im-
mobile, and the electrons are considered to be either free or bound to
an equilibrium position by a Hooke's law type restoring force. From this

model, which is really the combination of the Drude free-electron meodel

- 10 -




of metals and the Lorentz model of an insulator,5 a dielectric constant
can be obtained which describes the characteristics of wave propagation
in solids for a wide frequency range.

For the bound electrcons, the dielectric constant is

o 2

- _ pb
Eb € 1 2 . W 2
w o -jT--uw
T s

¥

where W is the "spring constant' frequency, and wp is the plasma fre-

quency defined as

o = |z2del

€ m
P o}

For the free electrons, the dielectric constant is

om
i
)
‘_.I
!

€

1
(S PN N
€

In z good insulater where essentially no free electrons are present,
15 used. In a metal at low frequencies, the polarization is negli-

gible and g is used. For intermediate situations the sum of € and

. is used.
L

This simple approach is surprisingly accurate for a wide range

5 H. Ehzenreich, "The Optical Properties of Metals,'" IEEE Spectrum,
Vel, 2, March 1965, pp. 162-170.
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of materials and frequencies. For example, H. Ehrenreich® discusses
the optical properties of metals based on this model. He finds good
correlation between theory and experiment.

Although the Drude-Lorentz theory successfully explained many
of the properties of metals, it did not agree with experimental evi-
dence in the prediction of a contribution to the molar heat capacity
of a metal by the free electrons. The predicted 3R/2 contribution
could not be verified. This conclusion was inherent in the theory and
was due to the use of Maxwell-Boltzmann statistics.,

This problem with the Drude-Lorentz theory was subsequently re-
solved by the discovery of the Pauli exclusion principle and the appli-
cation of Fermi-Dirac quantum statistics to the solid as postulated by
Sommerfeld. Fexrmi-Dirac statistics are now the éccepted method for
general treatment of temperature effects in a semiconductor or metal.
However, in many cases it is still possible to make a good approxima-
tion and use the Maxwell-Boltzmann results. These cases will be dis-

cussed in detail in Chapter V.

Energy Band Theory. The Drude-Lorentz plasma model and the

later addition of Fermi-Dirac statistics has given a fairly complete
picture of the properties of solids., It would seem at this point that
the energy-band concept mentioned at the beginning of Section 2.3 is

not needed. However, there is one very important property of materials

6 Ibid.
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that the Sommerfeld theory still could not explain. Why do some atoms
combine to form insulators and others end up being very good conductors?
This is a terribly important question because to a large extent it de-
termines whether or not we have a plasma to work with.

A modification of the Drude-Lorentz and Sommerfeld theories is
necessary because in a crystal lattice the electron sees the periodic
potential of the lattice in addition to any exﬁernal field. The perio-
dicity of this potential modifies the possible states that an electron
may occupy, so that certain energy regions are now forbidden. The elec-—
trons in the solid will be found in the permitted regions or energy
bands, as they are usualiy named.

The solid may have some of the energy bands with their states
filled and with a large band gap to the next higher states. This will
result in an insulator, since the electrons are essentially bound to
theilr positions and energies., However, if the forbidden energy gap is
small or a band is only partly filled, a semiconductor or a conductor
will result. A quantitative description of this process will be pre-

sented in the next section.

2.4. Important Plasma Properties of Semiconductors

The important properties which are needed in a plasma model and
which are determined as a consequence of the band theory are the carrier

concentration, effective mass, and mobility.

Carrier Concentration in a Semiconductor. For any plasma effects

- 13 -




to occur, there must be a concentration of mobile charged particles
within the semiconductor. Furthermore, it is usually necessary to
know this concentration with a reasonable degree of accuracy. The
total number of mobile carriers in the conduction band (the energy
band that results in the normally observed electron conduction) is
determined by the number of available states in the conduction band
and their probability of occupation. A similar situation holds for
the hole concentration in the valence band (the energy band where all
electrons are found in the 0°K or unexcited state).

Using Fermi-Dirac statistics and assuming spherical energy

bands, the total number of electrons per unit volume in the conduction

o2 1)

E - E )/kT 1)
E 1+ e

band is given by’

where Ec is the lowest energy of the conduction band, and E_ is the

f
Fermi energy.
In order to evaluate the integral of Eq. 1, the approximation

is usually made that

E - Ef E - Ef
1+ exp (—"—k-,r—') = exp (T (2)

7 C. Kittel, Introduction to Solid State Physﬂcs, New York, John Wiley
& Sons, 1966, p. 304,
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The simplification is justified provided that E - Ef > 2kT, or depend-
ing on the desired accuracy of the results. What this simplification
means is that we are going to use Maxwell-Boltzmann statistics. Physi-
cally, it means that there are many unfilled states at the usual tempera-
tures of interest and the Pauli exclusion principle does not have a sig-
nificant effect on the occupation probabilities. This, incidentally, is
one reason why the Drude-Lorentz model gives an accurate description of
many phenomena.

With the approximation of Eq. 2, the integral can be evaluated,

Ef - E@
exp <—‘——k’.f"—> (3)

and the result is
3/2

<2mek1‘>
n=2(——
2

1f we write

E. - E
n=170 exp S
e kT

then

3/2

ZﬂmekT
De = 2 <—_;§Z”—> 4)

can be thought of as the effective density of states in the conduction
band.
.The hole concentration can be derived similarly if we recognize

that the probability of a hole occupying a state is the same as an elec-
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tron not being in that level.
g(E) = 1 - £(B)

Then writing an equation similar to Eq. 1 and integrating we

get

3/2
., 2nmhkT o Ev - Ef )
P ) P KT

where the limits of integration are now -« to Ev’ the top of the valence

band

3/2

2ﬁmhkT
7= 2( ) ©

is the equivalent density of states in the valence band.
For intrinsic materials, the carriers are thermally generated

g0 that n = p. Then combining Eqs. 3, 4, 5, and 6

-E
n= (Devh>l/2 exp <—2fk—%> (7

where Eg = EC - EV, i.e., the band gap.
The effective masses m, and m, are usually determined from
cyclotron resonance experiments, so that for a known value of Eg’ we

can calculate the carrier concentration as a function of temperature.

For an extrinsic material, impurity atoms can increase the
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concentration of either holes or electrons. However, the product
np = DD, exp (—Eg/kT) (8)

is constant at any given temperature, so that 1if we have an excess of
electrons, the holes are correspondingly decreased in number.

One other important difference occurs in doped materials. Im-—
purity doping drastically affects the carrier concentration. As more
and more states are made available by the impurity atoms, the Fermi
level moves closer to either the econduction band (for n-type) or the
valence band (for p-type) matexrials. This means that the energy differ-
ence (E - Ef) gets smaller and, therefore, closer to kT. For matexials
of even medium doping concentrations, the Fermi level is sufficiently
close to E that there is little change in the carrier concentration with
temperature, since all the impurity states are excited. If the doping
is made even stronger, the Fermi level finally ends up inside the band
and we get what is known as degenerate doping, when the carrier concen-
tration is essentially independent of temperature for all temperatures

and the material resembles a metal.

Effective Mass. If we assume that the contribution of the lat-

tice is to modify some external force that is applied to the electron,
then it is possible to derive a general relation which results in the
effective mass.

For a frequency v and a wavelength A, the group velocity v for
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an electron wave packet is given by

Using E = hv and putting k = 2m/X, we have

_ 2r  dE
h dk
and
2
dv _ 2m di &%E .
dt h dt dkz

If this acceleration is due to a force F, then the work done

on an electron in time 8§t is

§E = F ¢« v §t

_ o 2mdE
= F n ak "
But
dE
8E = EE'Gk,
dE o 2m dE
_&EékthdkSt
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which means that

-§ &
Sk = F n 8t
and
Sk _dk _ o o2¢
8t dt h
Substituting Eq. 10 into Eq. 9 gives
2
dv _ 2m o om d°E
dt h h dkz
or finally
52 av
F==ar
d“E
dk?

Comparing Egq. 11 to the usual force equation

dv
meEE

. £
we can write a mass term m

where the asterisk on '"m" is used to denote a possible
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the free electron theory. The important point of this deviation is
that once we know the relationship of E versus k in any material, then
the effect of external forces can be determined.

In a solid, the E versus k curves are in general different in
different crystal directions and also may have several energy levels
geparated by forbidden regions. This leads to an effective mass tensor
for any given crystal. In practice, one usually refers to the litera-
ture to get a numerical value for the effective mass of a material with

the particular crystalographic orientation specified.

Carrvier Mobility. The mobility is defined as

(13)

T.
l
)<

and relates the velocity of the carriers to the applied external elec-
tyic field. This is another important quantity, because interactions
involving drifted carriers are strongly dependent on the carrier veloc-
ity. Physically, the mobility is determined by the effective mass and
by the collision dawping. As the carriers are accelerated by the field,
thelr veleocity increases until they collide with a lattice point. Then
the process ig vepeated. A steady-state condition is reached where an
average drift velocity can be defined. Because the process is essen-
tially collision dominated and the effective mass term has already been

discussed, further discussion will be postponed until collisions are

congideved in detail in Chapter V.
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I1II. SPACE-CHARGE WAVES AND GAIN. MECHANISMS

In Chapter II, the plasma properties of solid-state materials
were discussed. Experimental verification of some of these properties
leads to the reasonable assumption that other plasma effects may exist.
In particular, it may be possible to discover solid-state analogues to
electron-beam interactions such as the double-stream amplifier or the
traveling-wave tube. In this chapter, we would like to consider in more
detail what types of instabilities or gain mechanisms may be possible,
what other authors have already analyzed, and what experiments have been
performed to verify the theoretical predictions. A detailed analysis of
a simple model will then be made to illustrate the fundamental ideas of
how the gain arises and what conditions are necessary to have amplifica-

tion.,

3.1. Growth Mechanisms and Instabilities in Electron Beams

Historically, the first successful practical application of
gaseous plasma waves was in the klystron. The klystron operates with
a drifting electron stream where an entrance region serves to velocity
modulate the beam; the beam is then drifted until the velocity modula-
tion becomes current modulation or space-charge bunching. Some of the
dc energy in the beam is thus converted to ac and can be taken as use-
ful power output.

Other possible gain mechanisms were subsequently found and have
since been investigated in great detail. The most well-known and prac-

tical result of all this effort has been the traveling-wave tube. This
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is now a useful microwave amplifier in a frequency region where con-
ventional electron tubes cannot be built. Two other beam-type inter-—
actions which were developed in detail are the double-stream amplifier

and the admittance wall amplifier.!

However, they were never put to
practical use because a method was needed to couple energy into and
out of the beams. The best available method was a helix which suffi-
ciently slowed the propagation in a conductor to synchronize to the
slower beam velocity. The traveling-wave tube uses a helix to produce
coupling to the beam over the entire interaction length. Therefore,
if a helix is needed anyway, why not just make a traveling-wave tube?
Another problem with the double-stream amplifier is the difficulty of
intermixing two electron streams of slightly different velocities.
Although practical use was not made of all the possible pro-
posed electron-beam interactions, the ideas were well developed, under-
stood, and verified by useful devices. As solid-state materials became
further developed and their plasma properties better understood, it was

natural to investigate the possibilities of space~charge effects in

solids.

3.2, Theoretical Proposals for Solid-~State Space-Charge Interactions

The first definitive work in this area was done by D. Pines,?

1 C. K. Birdsall and J. R. Whinnery, "Waves in an Electron Stream with

General Admittance Walls," Journal of Applied Physics, Vol. 24,
March 1953, pp. 314-323,

2 D. Pines, "Coherent Excitation of Plasma Oscillations in Solids,"
IRE Transactions on MIT,Vol. 9, January 1961, pp. 89-92.
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and D. Pines and J. R. Schrieffer.3 They analyzed the double-stream
interaction as it wouid apply to a semiconductor with holes and elec-
trons comprising the two streams. Their analysis was based on the
Boltzmann equation with a Maxwellian distribution function to include
temperature effects. Collision effectsiﬁere included by a linear ap-
proximation. In a plasma consisting of holes and electrons, the dif-
ference between the hole and electron effective masses 1is important as
well as the different effective temperatﬁres. For a practical example
they considered indium antimonide and concluded that gain would be pos-
sible at very low températures (220°K) for electric fields of about 100
volts/cm.

Vural and Steele" extended the two-stream analysis to include
longitudinal magnetic fields. Their analysis was done to include both
transverse and longitudinal effects instead of the one-dimensional
analysis of Pines and Schrieffer.® They concluded that instabilities
in the millimeter~wave region appear possible.

Recently, two other articles have appeared in the literature
which are of particular interest. These articles consider layered

structures such as will be the main topic of this report. B. B.

3 D. Pines and J. R. Schrieffer, "Collective Behavior in Solid-State
Plasmas,'" Physical Review, Vol. 124, December 1961, pp. 1387-1400.

% B, Vural and M. C. Steele, "Possible Two-Stream Instabilities of
Drifted Electron-Hole Plasmas in Longitudinal Magnetic Fields,"
Physical Review, Vol. 139, July 1965, pp. A300-A304.

> Pines and Schrieffer, loc. cit.
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Robinson and G. A. Swartz® derived a dispersion equation for a configu-
ration of alternate thin layers of p-type and n-type material. They
found that, using an analysis similar to that used by Pines and Schrief-
fer, they could relax some of the conditions to correspond to a more
physically realizable situation. In particular, the condition on wp+ Tys

where w is the hole plasma frequency and 7T

ot the hole relaxation time,

+
could be relaxed by about an order of magnitude from ~10 to ~1. However,
they concluded that it would still be necessary to have T+ << T , where
I+ and T are hole and electron temperatures. This is a very difficult
condition to satisfy experimentally, and would probably require some
special thermal contacts to the p-type layers.

A single layer of a thin semigonéuctor in a magnetic field has
been znalyzed by B. B. Robinson and B. Vural.’ They found that the ef-
fect of a transverse magnetic field on a thick semiconductor was the
same as just having a single infinitely thin layer in a magnetic field.

Some other aspects of the double-stream problem have been

analyzed. For example, Kai Fong Lee® considered the effects of higher-

order modes in bounded and/or inhomogeneous plasmas.

6 B, B, Robinson and G. A. Swartz, "Two-Stream Instability in Semicon-
ductor Plasmas," Journal of Applied Physics, Vol. 38, May 1967,
Pp. 2461-2465, ’

7 B, B, Robinson and B. Vural, "Double-Stream Interaction in a Thin
Semiconductor Layer," RCA Review, Vol. 29, June 1968, pp. 270-280.

8 K. F. Lee, "Higher-Order Modes of the Two-Stream Instability in

Bounded and/or Inhomogeneous Plasmas,' Journal of Applied Physics,
Vol. 38, April 1967, pp. 2172-2178.
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A second major area of investigation has been to propese travel-
ing-wave tube analogues for a solid-state plasma. This is a natural
outgrowth of the considerable success that traveling-wave tubes have

had a

[

beam devices. Unfortunately, the prcblem becomes much more dif-
ficult in a solid, for two reasons:
1. Temperature induced random velocities have much more of
a disturbing effect on the gain.
2, Collisions with the lattice and between the particles act
as 3 damping mechanism, conce again reducing the gain.
The effects of temperature will be discussed further in this
chapter and also in Chapter V, but just to have an idea of how signifi-

cant the problems are, it is interesgting to consider a very crude anal-

lectron beams. In an electron beam, the electrons are emitted

€
59
<

et

&

from a cathode surface at a temperature of about 1000°K, then accelex-
ated to energies on the order of 1.03 to 1.04 electron volts, for typical
beam tubes.

For a one-dimensional model, the temperature effect can be ap-

proximated as

where v_ 1s some average thermal welocity. This is a kinetic energy

term so that it can just as well be written in terms of electron volts.

Energy in electrom volts %-%g
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At 1000°K

%§-= .086 = ,1 electron volts (14)
It is apparent from Eq. 14 that the final electron beam veloc-

ity is very much greater than the randomizing effect of temperature.

In a solid-state plasma, the highest drift velocities observed are only

about two times larger than the v_ thermal velocity term. If this were

t
the case with electron beams, it would mean that at best we could use
accelerating voltages of about 1/2 volt instead of 1000 volts. Useful
beams would be nearly impossible to produce under these circumstances.
The solid, of course, does have well-defined boundaries so that focus-
ing of the beam i1s not necessary, but the randomizing effect of the
kinetic temperature term will cause severe damping of any interaction
which depends on well;defined beam velocities, as all of the space~charge
interactions do.

In spite of these apparent difficulties, solid-state traveling-
wave, amplifiers have been proposed by several authors. L. Solymar and
E. A. Ash® have perhaps made the best analysis to date and concluded
that the problem is indeed a difficult one. In addition to the tempera-

ture damping discussed above, there are major problems with the trans-

verse losses in a semiconductor and the large difference in natural prop-

9 L. Solymar and E. A. Ash, "Some Traveling-Wave Interactions in Semi-

conductors: Theory and Design Consideratioms,'" International
Journal of Electronics, Vol. 20, February 1966, pp. 127-148.
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sgation velccities between the circuit and the beam. The highest

. . - ; . ) =3
attainable drift velocities in semiconductors are about 10 "¢, where
c is the speed of light. This means that the slow-wave structure has

actor. This results

42}
g2

to slow the wave propagating on it by sbout this
in very large ohmic losses and probably requires superconductors or
some similar technique. The transverse losses can possibly be cvar-
come by having an anisotropic conductivity tensor. This will be dis-
cussed in detail in Chaprter VI.

Other essentially similar analyses have been presented, e.g.,

N P - il - . o o
M. Sumi, " and M. Ettenberg and J. Nadan.'® The conclusions are similar

caces, The gain per centimeter is alwzys very high when
g P 7

ffects are ignored. When a

)

femperature, and collision

The interactions analyzed by the suthors cited above by nc

An attempt has been made to

which are very c¢losely connected

the topics toe be presented in this report.

3.3. Experimental Observations of Space-Chsrge Interactions

The wealth of proposed interactions and thoroughness of the

10 M. Sumi, "Traveling-Wave Amplification by Drifting Carriers in Semi-
conductors,' Applied Physics Letters, Vol. 9, September 1966,
pp. 251-253.

yin in Solid-State Traveling-Wave
g, Vol. 59, April 1968, pp. 741-742.




analyses should point to a corresponding amount of experimental observa-
tion. A survey of the literature shows that this is not the case. A

considerable amount of effort has been put into this area, but conclu-

" sive results have been meager.

By far the greatest amount of experimental work has been,dope
on indium antimonide. Larrabee and Hicinbothém12 first observed micro-
wave emission at high fields from InSb. Since thé publication of that
result, many experimenters have tried various combinations of electrié.
and magnetic fields and samplé dimensions. Both low-frequency oﬁtput
in the megahertz range and broadband microwave emission can be féﬁnd
for a wide variety of experimental conditions, Bétsy Ancker-Johnson!?
has summarized these results and has proposed a theory to explain some
of the axpéfimental observations. The instability is not identified;
hut the effect of the magnetic field is postulated as being secondary to
the electric field. The main effect of the magnetic field is to concen-
trate the plasma and put it near the radiating surface. If the appro-
priate surface conditions are met without a magnetic field, the micro-
wave emission is observed in this case also. A measurement.of the plasma
densities inside InSb should détermine the validity of this theory. At

this time, it does appear that the experimental data fit this kind of an

12 R, D. Larrabee and W. A Hicinbothem, '"Observation of Microwave Emis-
sion from InSb," Symposiwn on Plasma Effects in Solids, Parls, 1964;
Dunod, publlsher, 1965.

12

B. Ancker-Johnson, "Microwave Emission from Nonequilibrium Plasmas in
InSb Subject to Magnetic Fields," Journal of Applied Physics, Vol
39, June 1968, PP~ 3365-3378.
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explanation, in which case the instabilities may be similar to those
encountered in gas plasmas-at high plasma densities and high fields.

A different approach to the microwave emission from InSbthas
been taken by G. A. Swartz and B. B. Robinson.!* They have assumed
the double-stream model with a transverse magnetic field to contain the
interaction near the surface. By cutting narrow slots in the samples
of ‘widths on the order of the space-charge wavelength, they have been
able to obtain coherent emission at reasonably well-defined frequen-
cies.,

Yet another explanation of the microwave generation has been
advanced by M. C. Steele.l® This paper proposed that the radiation is
due to photocénductive mixing of amplified spontaneous radiation. The
conditions for this type of amplification are satisfied when the elec-
tron~hole density produces the population inversion required for ampli-
fication of the band-gap radiation.

Observation of microwave radiation from materials other than
InSb has not been successful. One of the few reported results of any

kind of‘oscillations in germanium is by H. Heinrich and D. K. Ferry.l®

1% 3, A. Swartz and B. B. Robinson, Coherent Microwave Instabilities in
a Thin Layer Solid-State Plasma, Princeton, New Jersey, RCA Labora-
tories, 1968.

!5 M, C. Steele, "Microwave Generation from Photoconductive Mixing of

Amplified Spontaneous Radiation,'" RCA Review, Vol. 27, June 1966,
pp. 263-271. '

16 g, Heinrich and D. K. Ferry, "Hot Carrier Current Oscillations in
n-Type Germanium," Applied Physics Letters, Vol. 11, August 1967,
Pp. 126-128.
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These oscillations are in the megahertz range and at very high electric
fields, sufficient to produce current saturation.

It should by now be apparent that a conclusive result has not
been obtained to date. The experimental observations neither prove nor
disprove the space-charge model. Double-stream interaction does give a
suitable explanation for the results of Swartz and Robinson. However,
the other proposed theories seem to fit as well. Subsequent chapters of
this thesis will bring out some of the many problems with space-charge
interactions which would cause the serious experimental difficulties en-

countered at this laboratory. and, apparently, elsewhere.

3.4, Introductory Discussion of the Double-Stream Interaction

From the theories and experiments summarized in Sections 3.2 and
3.3, it should be apparent that a complete or even adequate explanation
has yet to be found. Significant contributions can be made in both the
theoretical and experimental areas.

As an introduction to a quantitative analysis, a simplified model
will now be considered which includes some of the characteristics of a
solid-state plasma. We will show how the gain is predicted and then dis-
cuss the necessary requirements on the dispersion relation to verify a
time and space instabilityo

Since we have ‘indicated that the plasma model may bé a good rep-
resentation of the actual solid, an analysis based on the hydrodynamic
equation for a plasma will be the basis of the subsequent discussion.

The hydrodynamic equation is only an approximate approach. TFor accurate
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results, the Boltzmann transport equation should be used instead. This
more complicated analysis will be considered in Chapter V.
The effects of thermal velocities and'dc;driftﬁvelgcities are

very important in solid-state plasmas. To include these effects

]
o

s

start with the momentum transfer equation for the "ith" component of a

multistream plasma, which may be written asg®’

-
dv VA teE :
i - it e Lo .
at = - vV Pi -~ ‘nE + ‘\Ji X B> \’(Ci Vi (.LEM
il i

The symbols in this equation have the usual meaning, i.e., v = veloc~
ity, P = pressure, Zi|e] = total charge, m = mass, and v, = collision
frequency. Since we have neo agpplied B-field, Eq. 15 can be written

in a simplexr form.

dv _ _ VB _ lol B e
at mn P e
(167
lal o Tp > N
- _L.i.l_ E o= _\,._;P_ dv + v
m mn dr o

To facilitate the szsnalysis, we now sssume a time and space

o . . , . . c e j{wt - Bz
wariation in the z-direction of the wusual periodic form, e - B >n

Then, with the small-signal assumption, i.e., ac velocities much

smaller than do,

-+ B i
d av dz v 8 7 -
=T = T T — = = 3R v v+ jw v
£ 2z dt = 93¢ SRV Y, TS

17

M. A. Uman, Introduciion o Plasmae Physics, New York, McGraw-Hill.
1964, p. 31,




Therefore,
e | E =+ —+ ('w + L i8 v (17)
18] \J T J VO) N \

However, we can write the pressure term as

= %'(p + p }kTB =
ve o _ o/ _ kT Vp
mpo mpo mpo

where n = s and n, = °y + 0. Now, if we define a thermal velocity

as in Section 3.2

1 1 2

5 kT = 5 m Vt
then

‘ 2

ve Ve P

e, Po

e ) i (w
If ¢ has the sams pericdic variztion e

L, 2
-—‘;» -~ Rt -~
o TR
%o Po
and our force equatiocn becomes
!e! 2
- E s {ije 4+ =~ v, -] ——-V 18
a5 *3 iB ¥ \ . P (18)




A further simplification can be made if we neglect the %—term. This
is the collision relaxation term, and neglecting it will mean device
operation at frequencies w >> —, The effect of this term on the gain
will be considered in detail in Chapter V.

The determinantal equation for the infinite double-stream case
now can be derived as follows:

> - - - . - N
VxH= Jl + Jz + jw € E=0 (19)

2z = . . iati
Setting V x H = 0 implies that there are no transverse variations

: . . 2
- lEi—EZ = (Jw - JBVO> v, =3 gi-v )

m t
o
But

J = pov + vop

R . . w
for small ac variations. Then, if we define Be =5

(o]

J - vop

v - jBlp (jBeJ + —;—9
[9] e o

Using this expression for v in the forxrce equation,

ag ), . B 213
(;BeJ + oz +3 s Ve jw oz

le] 7. , 1
" m Ez - (Jw - JBVO) jBepo

Now assuming the same periodicity for "J"; i.e.,
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5 D-j BZ

™ i 2 - > T
The expression for the E-field in terxrms of J then becomes

2
-i8_p el BB v 3B
€ 0 ' = S0y e 4 Ry 2 n - g - e t y
m Ez 7 (j“ wao)(gﬁe JB) w Jz (20)

When this result is substiiuted in Egq. 19, we arrive at the following

result (after & few algebraic manipulations):

2 2
7wEl wgz .
7 p)
v 2oy v
. ol £ EZ -1 (21)
[ ==
(-31 T Ve Vol Vo2 * Ven Vi Ve
wheare
2 Pa ®
“ol T e m
o
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It is mot particularly easy to see from this equation that there
is a possibility of getting complex values for w or B, which would indi-
cate possible growth in space, time, or both. The simplest possible re-

sult that still sarisfies the requirements of a double-stream interaction

is to look at the zero temperature case. Then Vg T Vip T 0, and Eq. 21
becomes

w 2 " 2

L PZ___ - (22)

It is not absolutely necessary that both streams have a drift
velocity, so assume that as a special case Vo1 T 0. This now results

in a second-order equation in B which is easy to solve.

_,_____PLZ_,__zl_,_Pi (23)

(24)

I1f wpl > w in Eq. 24, then B has an imaginary term. One wave
will grow spacially and the other will decay.

The more general case where temperature effects are included
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is considerably harder to solve. As can be seen from Eq. 21, a fourth-
order equation results in w or 8. The simplest method for obtaining
solutions is to program the fourth—-order equation on a computer. These
results will be analyzed in detail in Chapter V.

Another method, which is sometimes useful to see if complex
values of B are possible, is to write the dispersion relation in a form
that can be analyzed by root-locus techniques. Any equation, such as
Eq. 21, which can be rewritten as a ratio of factored polynomials and
equated to one, is ideal for & root-locus analysis. The poles and zeros
bf the equation are plotted in the complex B~plasne and the standard rules
for positive or negative feedback can then be applied to find the re-
gions of complex B, if any exist. Equation 21 could be analyzed by this
technique also., However, the factors are reasonably complicated and
many cases would need to be considered for a useful analysis. The in-
finite plasma is not of sufficient importance to this report to permit

this consideration.

3.5. Classification and/or Verification of Instabilities

In Eq. 24, we found that B has complex values for certain values
of w. This implies that a spacial growth or decay exists for a wave
propagsting, as given by the real part of B. P. A. Sturrock!® has shown

that this is not sufficient to determine whether amplification is pres-

18 p, A. Sturrock, "Kinematics of Growing Waves," Physical Review, Vol,.
112, December 1958, pp. 1488-1503.




ent., Additional requirements must be satisfied. Before these require-
ments can be stated, an understanding of the different possible results
is necessary. Sturrock classified waves as either growing or evanescent
where these terms have the usual intuitive meaning. The growing waves
can be classified further into convective or nonconvective instabilities.
A convective instability is one where the wave grows but propagates away
from the origin so that the origin may eventually return to its undis-
turbed state. A nonconvective instability, on the other hand, grows in
amplitude and extent but always includes the point of origin. Sturrock!?®
was able to make the following general statements: "If w is real for all
real k, then any complex k, for real w, denotes an evanescent wave. Con-
versely, if k is real for all real w, then any complex w, for real k, de-

' Sturrock's k corresponds to our RB.

notes nonconvective instability.'
From this statement we can see that even though complex B exists,
it does not necessarily determine a growing wave in both space and time.
If, however, we can find complex w for real B in addition to complex B
for real w, then at least there is a possibility of finding growing or
amplifying waves.
Consider Eq. 23 once more:

2
0 w

— P2 4

Cu - Bvoé>2 W

o
|

(23)

NI

19 rbid., p. 1488.




If we simplify further and assume that wpi >> wz, then

and

BVOZ

W = ——————— (25)

. u)z

(Hj_a_

W ;
pl

Complex w will exist for real B, and growing waves are a possi-
‘bilitye Unfortunately, this does not guarantee a convective instability.
The general rules are only for the evanescent waves and nonconvective
instabilitiésa Sturrock discusses the case of a double-stream amplifier
and concludes that when the stream velocities are in the same direction,
two of the waves carried by the streams represent a convective insta-
bility. When the‘streams are in opposite directions a nonconvective in-
stability results, so that complex w and real B must be used for the
analysis. Therefore, by knowing the physical process involved, Stﬁrrock
is able to identify the type of instability occurring. This is’éll we
need to know for the present work, since all the cases to be considered
fit well into this framework. It is interesting to note, however, that
given a dispersion relation with more than'tﬁo waves and of unknown
origin, in some cases we would not be able to completely determine the

type of instability or whether growing waves really did exist.
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R. N. Sudan?® has investigated this problem further and has
been able to arrive at 5 set of conditions which are helpful in resolv-

ing problems cof the type just mentioned. These conditions csn be simply

exp {mt - Rlw)z}
where
u + Juw,
‘ A
B =8 + 1
g. lim Re ;B(;)l must approach += foxr -o < p_ <+, for
Wy - f r
causality to be satisfied. Causality means that there is

- Y
Re ¢ 1A \(k, O, wy =0

ad

I

any value of w on the resl axis, if criterion a is

4

c. dwidB must vaenish for some values o

=

wi < 0 if a nonconvec~—

from their Dispersion
ber 1965, pp. 1899-1904,




Let us now apply these rules to the simple result of Eq. 23

As w, + -
i

Bv

> =g +
02 J

p2

then Re (jB) - += so that both signs of Eq. 26 satisfy condition a.
- N VN C s
If w, = 0, and wpl > w, then Re {J(jsi)j < 0, and by condition b, a

convective instability exists for wpl > w. Finally, calculate dw/dB

W0
dg _ 1+ p2 pl

v 2k
02 dw (,2 2>3/2
W= w
rl

Then dw/dB is zero only when w = % w

pl’

Both of these values are on the real axis, so there is no possibility

eof nonconvective instability.

3.6. Summary of Chapter III

This chapter has introduced the fundamental ideas of space-
charge interactions and has presented some of the possible explana-
tions for the experimental observations. The short review of what has
been accomplished in this field should serve as a very persuasive argu-

ment that further investigation is necessary.
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An idealized problem has been discussed in detail to illustrate
the basic interaction mechanism. A set of rules for determining insta-
bilities from their dispersion relations has been presented, and applied

to the idealized model.
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IV. ANALYSIS OF PERIODIC LAYERED STRUCTURE

The one-dimensional double-stream analysis considered in Chap-
ter IIT provides understanding because of its simplicity, but it is not
a physically realizable situation. The two electron streams of differ-
ent drift velocities were assumed to be perfectly intermixed, and a one-
dimensional model was used which presumed infinite transverse geometry.

This chapter will consider some of the more practical cases.
First, the infinite periodic array of drifting plasma layers will be
analyzed. This avoids the problem of intermixing the streams but still
requires infinite geometry. An infinite array is useful for
mathematical convenience to illustrate the transition to the more com-
plicated finite structures. Then we will consider two physically real-
izable configurations (Qith v, = 0, v, = 0), analyze some numerical

t

results, and compare these to the simple idealized model of Chapter III,

4.1, Analysis of an Infinite Periodic Array of Drifting Plasma Layers

Consider an infinite array of electron streams or drifting

plasmas as shown in Fig. 1. We will assume that the electrons have

X

A

§ //</<///</////<QP ///<////
S IS cspiz'///////
S e N

-2a

Fig. 1. Infinite array of plasmas drifting in the z-directionm.
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as ej(’wt - B2)

de and ac velocities only in the z direction, that all quantities vary

, and that the usual small-signal approximations hold.

We can begin our discussion very generally by starting with the

coupled-wave equation for the vector potential and then using the usual

Lorentz condition as follows:

> > > 2 =
V(V ¢ A) = VA = puJ - u

Qe
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ﬁ i
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For velocities in the z direction only and small-signal propaga-—
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[
el

2
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- e

11

Lo

7 e _9.‘
Since J and E have z components only, the vector potential A

likewise have only a z component.

., J has already been derived in Chapter III as

(27)

(28)

(29)

(20)
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This then gives us the final wave equation for the vector potential Az

i 2 2 B

n 34 can be put inte a2 more convenient form by defining

Equat
w 2
2 2 2
T];<B—k.> 1 - i 5 (35)
@)m Bvol) - B Vel

whers the subscripts define the stream for which the wave equation is

written. Then fov stream No. 1, the equation reduces to

2 2 B
(VT - Tl) A, =0 (36)

Assuming that there is no variation in the y direction, the
boundary conditions on the electric and magnetic fields require that

A_ and 34 /ox be continuous at the boundaries between the streams.

it

W
@

=
Matching the vector potential A and its derivative at the boundary

assumes that & and u have the same values in both materials. A more
general condition will be considered shortly. It may be noted that

o

- - & a7 k3 - + 2 “
-he boundary conditions are identical for the E field and that the

5
3

r
{
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- - o e 2 2 e N
same equation results if an analysis is made in terms of the E fields.
For no y variation, the wave equation will have solutions of

the form

A = Ae™™ + Be 37)

where A and B are constants which will have to be evaluated.

We can now write the sclutions in two adjacent layers as

(38)

z2

Let this boundary be at x = 0; then we must match the solutions

smoocthly.

Since the alternate layers extend to infinity, a periodicity
condition must be included. This may be donme in the following way
-igx
o 18

= ng(X)

Hg(—a) = ﬂg(+a)
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Therefore,

-T. .2

. Tza 9
= g +9% c(l‘n - iq)e - D{iq + Tz)e

In order to have nonzero soluticons for A, B, C, and D the determinant

of coefficients is sef equal to zero.

1 1 1 1
T =T T -T
I 1 3 2
=T 35 T.a T.a - a
+iga 1 +iga 1 -iga "2 ~iqa, "2
e | i'g & q e 4 e q e
1qa T1® iga 11% iqa 2% 122 Liqa
1345 iR 1ga - PR -
v(lQ'T,)E e ¥(LQ#IJ)@ 1% (Tz—lq)e 484 =(1q+T2)e e 74
If iz expanded by minoxrs and simplified, the rssulting
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az<82 - kz) 2 +

= 2 cos (2qa) - 2 (41)

where, as in the previous chapter, we have assumed that Vo1~ 0. This

equation shows the coupling between the plane waves, represented by
52 - kz, and the space-charge waves, represented by the terms involving
us1 and wpzn The infinite number of values cos(2qa) can have repre-
sents harmonics due to the infinite, periodic nature of the electron
streams.

The easiest case to consider is cos(2qa) = 1. Then, in addi-

tion to the plane waves B = % k, there are space-charge waves given by

the solution of

2 2

e “p2
2 2 2

2v 2<§ v

1

- t - " > 02 t2 . -1 A , (42)

<B':;—>B*r) (BG—‘%‘T‘X';—_—T)
tl tl 02 t2 02 t2

Since this is the same equation as that obtained in Chapter III for

the infinite double streams if wpi and wpg are replaced by wpi/Z and
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wp2f2, we can conclude that there is a growing wave present in this
periodic arvay having the same gain factor zs the growing wave in the

previous case, only at & lower frequency.

a

4,2, Dispersion Relations for Finite Layered Structures

:

Since the purpose of this reporxt is to investigate the possible
space-charges intevactions that could result in useful devices, we would

now like to consider two configurations which could be realized in the

laboratory. Twe finite lavers of a semiconducting material can be

3

ced in intimate contsc

t 1f the surfaces are polished. If one of the
layers must be very thin, then vacuum deposition techniques could be

used. Unless special conditions were satisfied, vacuum coating would

U)

T R nem T o~
resurit An TOLVC

low mobility. This would fit
well inte an snslysis which considers one of the streams as stationary.
y

The two possibilities which will be considered are:

2

The configuration with metallic boundaries is useful because of the

j0]

impler equations that vesult. The configuration which does not have

hand, is easier to build. 1In any case,

congidered and the results compared.

Adjacent Plasmae Layers with Metallic Outer Boundaries. Figure 2




X = +3 Metallic beundary

x ///
Region 1 e wpl
3 Z
\\\\\\ \\\\\\\\\\\\:\\\\\\ Region 2 €95 wpz

X = - Metallic boundary

illustrstes the configuration for which we will now derive the dis-

persion relation. In Section 4.1 we derived the general wave equation

for a plasms with propsagation in the z direction.

(vz - T2> A =0 (26)

- (6 -k 1 - — (43)

the infinite layered structure of Section 4.1, we matched ampli-

13
€
i
[n)

tudes and derivatives across the boundary. A more general treatment

is to match longitudinal E and H fields across the boundary.
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s the electric and magnetic fields are given by
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N4

P (46)

tailored for boundary conditions in Re-

s Yespectively, are

~ i
N feat
z
‘/_\\

fend

Pt R

s3]
[\]

,
2 - 62)

2
- 82> BZ ginh T

cosh T

sinh Tl {(a - x)

B1 ginh Tl {(a - x)

(b + x)

2
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These expressions satisfy the boundary conditions at x = +a and
x = —-b respectively.
The boundary conditions at x = 0 are that Ez and Hy are con-
tinuous. Therefore,
2 - g?)
Bl sinh (Tla> = 3 B2 sinh (T2b>

1 k2

Tl Bl cosh (Tla.)= - T2 B2 cosh (sz)

The determinantal equation obtained by combining these two equations

is

R tanh <Tlac>= S tanh (T2b> 47)
ko T ' k. T
171 2 72

Equation 47 is the general dispersion relation which will
determine the regions where gain exists and what material properties
are required. Before looking at this equation in more detail, how-
ever, let us derive a similar expression for the case without metallic

boundaries, as illustrated in Fig. 3.

Adjacent Plasma Layers with Free Space at the Outer Boundaries.

Consider the case of two finite layers in free space or on an insulating
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Fig. 3. Twc finite solid-state plasma layers in free space.

base @s shown in Fig, 3. The general form of the solutions will be

T.x -T.x
A = A e 1 + B e 1
zl
sz -T.x
A = C e + D e
z2
. (48)
-T.x
_ 3
Az+ = E e
T.x
A = F e 3

Using Eqs. 44 and 46, we can write the Ez and Hy fields as follows:
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zl

z2

z+

vyl

y2

v+

y.—

We now match boundary
x = -b to get the six

At x = 0,

2 1
k1
T.x =T.x
Jw 2 _ L2 2 2
> (kz R )(% e + D e
k
2
-T.x
(2 e
k
T.x
J%—(kz - 32) Fe o
k
T.x -T.x
1 1 1
N (k Tl e - B Tl e )
T.x -T,.x
2 2
) <E TZ e - D T2 e )
~T.x
1 3
" E T3 e
T.x
1 3
" F T3 e

conditicons on Ez and Hy at x =

equations following.
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and
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ki - B ki - 62
(A+ B) = (C + D)
k2 k2
1 2
Tl(A - B) = TZ(C - D
at x = a,
2 2
ki - B T.a -T. a 2 2 ~-T.a
1 <; e 1 + B e 1 = k -8 E e 3
2 2
kl k

(50)

Following the same procedure as in the previous subsection, we can now
write Eqs, 50 as a determinant of coefficients and equate to zero.

First, simplify the notation by defining
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Then the

determinant of coefficients is given as

-n

~-n

+T

0 0 |
-n e-T3a 0

0 -n e--T3b

0 0 =
T3 e—T3a 0

0 —T3 e—TBb

When this determinant is expanded and simplified, we arrive at the

dispersion relation for the configuration of Fig. 3.
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‘nT n.T nT n.T
<; T2 + 2 %> tanh<T2b> + E—El~+ n% 3) tanh(Tla) +
273 nTZ 173 1

(52)

+<;1:2 + 22$l> tan11<'Tla> tanh\’sz) +2 =0
271 172 ’ )
Equation 52 for free space at the outer boundary is equivalent to
Eq. 47 for the metallic boundary. It is now easy to see why the
metal boundaries were included as a way to simplify the dispersion
relation.,

Other configurations of three or four layers could similarly
be’a,nalyzed° However, the two-layer structure includes all of the

significant characteristics so there would be no particular purpose

in looking at the ever more complicated expressions.

4,3. Properties of the tanh(z) and tanh(z)/(z) Functions

Both Egs. 47 and 52 contain tanh(z) functions in various com-—
binations. In this secticn, we will consider a simplified form of
Eq. 47 and show what conditions are required of the tanh(z)/z function,
and consequently of the semiconducting materials, to result in complex
B or w.

Once again, we make some approximations to make the analysds

more manageable. If Region 2 is assumed to be a thick layer, then

tanh (sz> « 1
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In addition, we assume that ki = kg and that 62 >> k

i. The assumption
that 82 is large is known as the slow-wave approximation. It means that
the beam is much slower than the speed of light in the material and that
the space-charge waves are propagating at near the beam velocity. Cal-
culations done on a digital computer, which will be discussed in the

next section, show that these approximations give quite accurate results.

With these approximations, we now rewrite Eq. 47 as

tanh(fla) B 1

(Tla) T T T,a

The important observation to make from Eq. 53 is that in order to

(53)

N

have solutions, tanh(Tla)/<Tla) will have to be the negative of
l/(T2a>, The key to the problem is to find regions of tanh(z)/z where
sign changes are possible. With this in mind, the tanh(z)/z function
was plotted on the computer with the results as shown in Fig. 4. Only
the first quadrant needs to be plotted because the magnitudes and signs

of the tanh(z)/z function are related as follows:

tanh(tz .
———§£—~l-= x + jy
%
tanh (tz ,
@) g
tz

% .
where z means the complex conjugate of z.
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Figure 4 shows that there are periodic regions of sign changes in
Re(tanh(z)/z) for values of Re(z) less than Im(z). This is an impor-

tant observation because

2
w
_ 22 __pl
T T (‘3 kl>l 2
w
and in the slow-wave approximation
2
“pl
Tl =B |1 - wz (54)

where B = Br + jBi°

Reasonable gain values are on the order of 1 percent to 10
percent per wavelength, so that Bi should be considerably smaller than
Bru Then if wpi j_wz, it would never be possible to get the necessary
sign changes, and growing wave solutions would not exist. In Chapter
I1I, we concluded that wpl > w would give gain in the infinite plasma.

This turns out to be exactly the condition that must be satisfied in

this case also. If, for example, wpi > w2 then
wP
SRy
and (55)
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Re (tanhtz)/z)
...... Im (tanh(2)/z)

Shaded areas indicate regions of -~

SO0
—mm’n,o
).
i

negative values for Re(tanhtz)/z).

Fig. 4. Numerical plot of the tanh(z)/z function,
where z = x + jy.
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Define X such that

From Fig. 4 and Eq. 55, we can now see that solutions will be possible
in the ranges of
1 Ll

£ P a=I. T, é-n - 27, é‘ﬂ - 37, etc. (56)
w 2 2 2

or solving Eq. 56 for "a" (the thickness of Region 1)

w -> - -
a = ;;I A [:1/4 1/2, 3/4 ~ 1, 5/4 - 3/2, . . __] (57)

One immediate oBservation that can be made from Eq. 57 is that
as wpl gets larger, "a'" will have to be correspondingly smaller to re-
sult in gain. Furthermore, all the dispersion relations will now héve
to be investigated for the thickness "a'" before gain vs. frequency can
be plotted.

The type of apalysiskthat has been presented in this section
results only in some very broad conclusions as to the requirements nec-
essary to get grqwing waves. However, the more specific computer re-

sults are also more difficult to obtain and not nearly as easy to inter-

pret.

4.4 Computer Investigation of the Metal Boundary Configuration

Equation 47 was programmed, without making any approximations,
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on a digital computer, and results have been obtained for both complex
B as a function of the thickness a, and w vs. B for a particuiar thick-
ness. To make the problem manageable, only "a" was varied and "b'" was
taken to be a large value as proposed in Section 4.3. Figure 5 shows
the results of B vs. a. The shaded areas indicate the previously pre-

dicted gain regions. As can be seen, Re(B) always lies within these

areas. The numerical values chosen are

w=1.88 x 1012 = 27(300 GHz)
W = 9,5 x 1012
pl
w = 1.5 x lO12
p2

v, = 3 x 105 m/s

The choice of these values may seem rather arbitrary at this time, but
they are based on reasonable semiconductor properties that will be dis-
cussed in detail in subsequent chapterxrs. The prime consideration here
is to see what relative effect each factor has on the overall disper-
sion relation.

Throughout this report w-B diagrams will be used as the indica-
tors of what effects temperature, collisions, etc. have on the gain.
The general method would be to always show the entire w-B plane for the
interaction. However, since we are interested in frequencies greater
than zero and in the conditions that result in gain, it is appropriate
tc consider only a portion of the first quadrant. To clarify this state-

ment, a general w-Bf diasgram for the double-stream interaction is illus-

i
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s

trated in Fig. 6. If the two plasmas are taken separately, we get
plasma waves of frequencies *w 1 and;impz'”propagatimg" at the drift
velocity (shown by the dotted lines in Fig. 6). theﬁ the streams are
intermixed, the waves are all coupled together; and while we still get
four propagating waves, they are qgiée diffefent from the individual
plasma waves. The fast waves of streams 1 and 2 couple to produce an
evanescent wave as do the slow Waveslaf streams 1 and 2. For w > O,
the slow wave of the fast beam couples to the fast wave of the slow
besm in such a way that complex B Z@sﬁltso This is the p@?ti@n of the
diagram where Re(B) vs. w 1is essentially a straight line. Equation 24;
for wpl » w, gives the mathematical expression (fbr the infinite aasé)
f@r‘ﬁhis portion of the curve. Because this is the region where the
significant gain is found, it will be.the region that is plétted in all
the computer work. The curves will always be plotted frbm the origiﬁ
at w E’0, B8 = 0 and terminated when Im{B8) shows that éignificanﬁ gain
no longer exists.

Figure 7 compares the computer results for the two-layer struc-
ture with metal boundaries to the infinite case of Section 3.4. The
general propagation and gain @hara@teﬁisti;s are obviously similar. The
gain for the layered structure terminates sooner due to‘the additional
effect of the thickness "a."

In Section 3.5, we discussed the necessary requirements to show
that a growing wave exists. Figure 7 shows that the basic intexaction

ig still the same. However, it is interesting to verify this by repeat-

ing the calculations for complex w and real B instead of complex B and

i
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Possible values of Ref3
shown by solid lines.

~

Fig. 6. General w-B diagram for the double-str
intexaction with streams in the same diresction.
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real w. Since there is no particular difficulty in identifying the
interacting waves for this case, solutions with Im(w) < 0 will prove

the existence of a convective instgbility. Figures 8 and 9 show the
results for the metal boundary configuration solved in terms of complex
w. Figure 8 shows a few of the gain regions as a function of the thick-
ness "a" and Fig. 9 is the w-B diagram that compares to Fig. 7 for com—
plex B and real w. There should be no further questions regarding the
validity of the basic interaction mechanism for either the infinite
plasma or discrete finite layered structures.

4.5, Computer Results for a Layered Structure with
Free Space at the Outer Boundaries

The results for this configuration are obtained by solving Eq.
52 on the digital computer. Figures 10 and 11 give the results for
complex 8 and real w that correspond to Figs. 5 and 7 for the metal
boundary configuration. The basic similarity of the results is to be
expected and is obviously verified. Once again, we get regions of
gain for Re(B) as a function of the thickness "a." The regions of gain
are exactly where the "forbidden regions' were for the metal boundary
cage. Physically, this can be interpreted as an interference effect,
similar to a thin dielectric film in optics. In that case, we also get
alternate bands of 3/4 for reflection and absorption, and the bands are
determined by the reflection properties of the material behind the film.

A somewhat arbitrary choice was initially made for w since

p2’
its effect on the interaction is a little harder to predict. Figure 12

shows that the choice of wpz is not critical as long as it is suffi-
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ciently large. If wpz > w, then the gain will be near the optimum

value.

4.6, Summary of Chapter IV

This chapter presented a defailed analysis of layered struc-
‘tures where the plasmé streams are not intermixe& but flow in adjacent
materiéls. To investigate the basic interaction mechaniém, temperature
effects and'particle collisions were negleéted, and‘space—charge bunch=
ing was assumed to be in the direction of the dc drift. The dispersioh
relations were deriVed for a configuration with metallic outer bounda-
ries and a configuration with ffeevspace at the outer boundaries. Usé—
Aful gain regions were found in both cases‘and the results werevpresented
in terms of w-B diagréms, The basic interéction mechanism has now been
verified and numerical results obtained for a practical case. The next
chapter will consider the limitations of the present model and what
changes are necessary to afrive at é theory that is suitable for pre-

dicting experimental results.
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V. THE EFFECTS OF TEMPERATURE AND PARTICLE COLLISIONS

The previous chapters concentrated on showing that the space-
charge interaction appears very promising in a solid under some ideal-
ized (but unachievable) conditions. With this chapter we begin the dis-
cussion of how to theoretically analyze solid-state plasmas that would
be found in the laboratory. In any type of plasma, it is usually im-
portant to include the randomizing effects of temperature and particle
collisions. In solids, we shall see that this turns out to be a parti-
cularly serious probleﬁ,

As is usually the case, more accurate models also become more
complicated, and a variety of approximate techniques become possible
and necessary. This case is no exception. The theory for nonequilib-
rium temperature and collision effects in solids is not well developed.
Even if the theory were available, it would in all probability be hope-
lessly difficult to use.

In the following sections, the thermal and collision effects
will be considered in some detail. Several approximate techniques have
been investigated and will be compared. A simple computer technique for
obtaining reasonably good results will be discussed. A simple model for
particle collisions will then be analyzed and both the thermal and col-

lision effects will be included in a physically realizable model.

5.1. Analyzing Temperature Kinetics

Two techniques are standard in plasma physics for including

thermal effects. The Boltzmann equation is used for all problems where
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the slope of the velocity distribution is important. When approximate
results are desired, however, often the hydrodynamic equation is used

to include temperature effects. This equation was utilized in the deriva-
tion presented iﬁ Chapter III (Eqs. 15 to 21). 1In this report, we will
use a somewhat different technique, in addition to the hydrodynamic

model, which is particularly suitable for analysis of streaming charge
carriers; This technique assumes a superposition of vglocity streams
which in the limit can be taken as an integral over a distribution func-
tion.!

First, let us derive the new dispersion relation using the super-
position technique and then compare this té the Boltzmann equation re-
sult and the hydrodynamic model. We will begin by considering a super-
position of an infinite number of electron streams having velocities
correspoﬁding to some velocity distribution f(v).

I1f, for one of the elecﬁfon sﬁreams, we let A9 be the velocity
including the thermal velocity and v, be the ac small signal velocity
and assume there are velocities in the z direction only,

Ti 7 Poi Vi T PR3 Yoy 58

By using the previously assumed periodic time variation and

the continuity equation for p and J,

1 ¢. ¢. Johnson, Field and Wave Electrodynamics, New York, McGraw-Hill,
1965, p. 379.
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J, = p v, +v . —J
i oi i ol w i
o . Vv, . '
oi i
Ji T 1-v , Blw (59)
oi

(60)

ni Ez
Vi = w - Bv
J oi
Therefore,
p . n, wk ' ,
I = oi 1 z . | ) (61)
I il - sy )2 _ .
J ol

The total current density will be a superposition of these cur-

rents.

J =7 J, (62)
i

. ; . oi
Define the particle density as n.= —E—-and then
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nipoi - m T Th f.(voi) A Voi (63)

-
=
e
i
w0
<
o)
[
~—
™o
N

In the limit, J can be expressed as an integral

jwnoe2 f(vo)dvo

Using the previous definition of the plasma frequency,

® f(v )av
J=-jue E_ w 2 ( —ﬁ;gz—iz"— (64)
z po | (& - By )2
-0 o]
This is now in a form that can be used in the wave equation
for the vector potential, as derived in Sectiomn 4.1.
2 2 2
(VT + k- - B ).AZ = —uJZ
Sf vo)dvO
= jupe (65)

——————F
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But,

so that

9 ‘ 2 ('Oo f(v )dv
(v% + k5 - BZ)AZ = —(52 _ kz)wpg l B W(w i Bv:)z A,

This can now be written in the familiar form of Eq. 34

o (m £(v )dv 1
vi‘, - (52 _ kZ) i - ""‘pé l —(—i—(—z%;—c)iz— jAZ = 0 (66)
L - ) o

As in Eg. 35, we define a "T" such that

(7% - :1:2) A= 0 : (67)

Then we have & new definition for the T's given by

< 2 B ) M\ ﬁ'(v » dv
TZ = <§2 _ k?> L= wpg j=m Z;N:Egggii (68)

This expression for T is valid for any one-dimensional distri-

bution function that we wish to use. Its usefulness is limited only by




the difficulties usually encountered in evaluating the integral.
Now, as promised earlier, let us compare this result to a deriva-
tion from the Boltzmann equation. Neglecting collision effects and assum-

ing a one-dimensional analysis, the Beltzmann equation is given as?

e af of _
ot m £ av tv 3z

Assume that f can be written as an equilibrium term plus a small

perturbation due to the interaction.

f = nofo(v) + fl(v,z,t) (69)

The fo(v) term in Eq. 69 has been normalized to correspond to the fo(v)
of Eq. 63. Then, neglecting second-order terms, the Boltzmann equation
becomes

of of leln of
0 - 0 :

l —
5t v P Tm tVag =0 (70)

Equation 70 can be simplified further if £, is assumed to have

1
S (wt - .
the usual plane wave dependence eJ(“ Bz)

]e|n of
' o} o
E..__.
m av

jlw - Bv) £, =

2 M, A. Uman, Introduction to Plasma Physics, New York, McGraw-Hill,
1964, p. 34,
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and

leln of
g 2
N m v
17 T 7D

The charge density p is defined in terms of fl as

¢

o = q fldv

Since fl has been written in terms of the E field, we can

write p the same way

.
v.eE=£2
£
and for one dimension
2E o
3z €
or simply
_jgE = £ o 2Ll (fdv
at E':. . i l

Substituting for fl from Eq. 71 and using the previous defini-

tion for plasma frequency mp gives

Bf
-mi (m 5;9 dv
YUTE D o 7
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Equation 72 is the one-dimensional dispersion relation for an

infinite plasma derived from the Boltzmann equation approach. The com-

parable equation by the superpcsition technique is obtained by setting

WT = 0 in Eq. 67. Then it follows that TZ = 0 and

2 ® f(v )dv =
1 = wpo J—w I;;iF;;;§Z (73)

The integrals of Eqs. 72 and 73 contain s denominator term

which can be equal to zerxo for w and B real. If the equality occurs
in 2 region where f(v0> # 0, then the integrals do not exist. This

difficulty can be avoided simply by specifying that B will always be
complex for acceptable solutions. Physically, this means that there
will be either gain or loss for 2ll cases of interest. All the sub-

seqgr

[y

ent numerical calculations will be done for the gain region. With
this restriction, Eq. 73 can be shown to be the same as Eq. 72 if we

?

integrate Eq. 73 by parts. ’

; f(»«.;o)dvg ) b( ) N r ) o dv_ af>
“(&"’_‘ ou >2 o/ B(w - B ;8w - Bv ) \3v,
—_— : [e)

-—C0 Kt

a

To have a physically realizable situation, f(vc> = 0 at -

znd += which eliminates the first term. Then,

: af
‘:m i (Vo )dx:v o ‘m (BVO ) de

(74
(w - BVO)Z . B(w - BVQ) i4)




Comparing Eqs. 72, 73, and 74 leads to the obvious conclusion
that the Boltzmann equation approach ané the superposition technique
give identical results for analysis of the temperature problem. Be-
cause the superposition technique is easier to understand in terms of
streaming particle interactions, it will be used in all subsequent dis-
cussions.

The remaining problem now is to fit the hydrodynamic model into
tﬁe distribution function approach. The derivation in Chapter III (Egs.
15 to 21) of the dispersion relation based on the hydrodynamic model was
very straigh;forward and gave an algebraic expression for the result
which, although complicated, is not too difficult to solve. Once again,
to compare the results, consider the one-~dimensional dispexsion relation

of a single stream. For a single stream, Eq. 21 of Chapter III becomes

2
w

P
T

=1 (75)

In the zero temperature case where v, = 0 and f(vO )is a delta
function in v Eqs. 75 and 73 give identical results. What then is
the reason that the hydrodynamic approach gives a simple algebraic re-
sult while the Boltzmann equation or a superposition technique results
iﬁ an integral equation? 1Is there any way to relate the two results
mathematically? The first question can be answered simply by recog-
nizing that the hydrodynamic equation is the result of averaging the

velocity distribution to obtain an effective thermal velocity V. The
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averaging is done without regard to any possible interaction between
the particle streams. The derivation is based on the assumption that
some average kinetic pressure can be defined for the system of ther-
mally excited particles. The net effect of using this theory is that
instead of having a single drift veloéity, the temperature spreads the
velocity over a range vy T Ve to Y4 + v;e The hydrodynamic result can
be matheﬁatically obtained from the distribution function integral by

assuming a rectangular distribution as in Fig. 13a of Section 5.3.

Normalizing f(vo) so that

and since f(vo )is assumed to be constant over the range of integration

1
f<vo) B th
Consequently,
w 2 vd * vt dv w 2
“po ( 0 - po . (76)
2v_ ! 2 2 2 2
t v, . (w - Bv ) (w - Bvo) - BV

which is the same as the hydrodynamic equation result.

It is interesting to note that if the integral of Eq. 76 is
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done in terms of the Boltzmann equation integxal as in Eq. 72, then we
need to evaluate Bf/BVO5 and for a rectangular distribution this just
gives two delta functions at Vg T Ve and V4 + Vo The final result is
the same as in Eq. 76. The interesting conclusion is that the slope of
the distribution function is very important and will have to be care-
fully examined in subsequent work. One would expect, therefore, that
because of the above-stated reasons the distribution function model
should be used for best results. In the following sections, both the

hydrodynamic model and the distribution function method will be applied

to practical problems and compared in detail.

5.2. Statistical Methods for Semiconductors

The dispersion relations of Section 5.1 are given in terms of
some welocity distribution function f(vo)n This distribution function
must be a good physical representation of the particle behavior within
the semiconductor, but also it should be mathematically manageable.
Neither of these requirements is easy to satisfy. In order to have
gpace—~charge interactions between drifting carriers, large electric
fields must be applied to the semiconductor to get high drift velocities.
Tt is experimentally found that at a certain point, velocity saturation
occurs so that there is no longer a linear relationship between the

E field and v {This will be discussed further in Chapter VIII.)

drift’
The velocity distribution f(vo) will be affected by the applied field.

For small applied fields, much below velocity saturation, the distribu-

tion function will be shifted by v so that it is symmetrically

drift

A)
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centered about V4 . However, at fields near the saturation level,

rift
a symmetric distribution function is no longer appropriate. To date
there has not been sufficient experimentsl work in this area to permit
any definitive statements. Therefore, one of the purposes of this chap-
ter will be to investigate several possible distribution functions to
see what particular properties are most important and what approximate
methods give consistent results.

For semiconductors, Fermi-Dirac statistics give the most com—
plete description., The basis for pestulating Fermi-Dirac statistics
and soﬁe fundamental results were described in Section 2.3. There it
was also suggested that for many situations Fermi-Dirac statistics

could conveniently be replaced by a Maxwell-Boltzmann description. The

Fermi~-Dirac distribution function is given as

I(E) =

A
e(E - Ef)_/'kT + 1 G7)
The explicit normalization constants of Eq. 77 have been included in
the factor A. This is sufficient for the subsequent discussion.

It was stated in Section 2.3 that in most cases iEf - E| »> kT,
so that the result can be approximated by a Maxwell-Boltzmann distribu-
tion. It is easy to see that this is indeed true for all temperatures
near or below room temperature and for almost any doping level normally
encountered. The energy E is equal to Eg’ the band gap, plus the kinetic
energy of the particles. Experimentally, the kinetic energy is never

much larger than kT. The Fermi energy E,. is usually near the middle of

£
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the band gap. The approximation that EEf - E! >>» kT will be accept-
able for all cases where !Ef - Eg§ »> kT. Ef will approach Eg only
for very heavily doped materials. Use of such materials is not anti-

cipated.

Then, taking ]Ef ~ E| »» kT, Eq. 77 becomes

£(EY = e(ﬁf - E)/kT

E, - E )/kT 2, _
f(E) - e( b3 g) e-mv kaI

The £(E) of Eq- 78 is cobwviously proportional to the Maxwell-

. o . 2 s o 2 s 32
Beltzmann distributicen funciion which is given as”®

1/2 nfv - v 2
£(v,) = (zj‘lkT> € - ”L‘%ﬁ-“ﬁ' (79

where Vg T drift velocity about which the distribution is centered.
The only differences between Egs. 78 and 79 are that the Fermi-Dirac
distributicn is neot normalized, wheress the Maxwell-Boltzmann result

is given in a form such that

pas

i f(v@)dv@ = 1 (80)

X

T. H. Stix, The Thecry of Plosma Waves, New York, McGraw-Hill, 1962,
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and the Maxwell-Boltzmann distribution has been shifted by vy
From the above discussion, we can now conclude that at low dc
electric fields a shifted Maxwell-Boltzmann velocity distribution is an
accurate representation of the temperature effects in a semiconductoxr
under experimentally expected conditions. When strong electric fields

are applied, however, the distribution may no longer be symmetrical

about Virife and some correction may be necessary.

5.3. Approximate Techniques for Evaluation of the Distribution Function

From the above discussion it appears that all that remains to be
done is to replace f(vo> in Eq. 68 by the Maxwell-Boltzmann distribution
function, perform the integration, and analyze the answer. Unfortunately,
the integral of Eq. 68 with a Msxwell-Boltzmann distribution in place of
f(vo) cannot be evaluated explicitly. At best, it can be expressed in
terms of the complex error function which has been tabulated by B. D.
Fried and S- D. Conte.* This is not a particularly satisfying situation,
and has consequently been one reason why other approximate techniques
have been investigated. The need to unéerstand what effect the distribu-
tion function has on the integration is further emphasized by the uncer-
tainty of what shape it has in an actual solid, as discussed in the pre-
vious section. If the results critically depend on the distribution
function, then accurate theoretical prediction of a practical result

! i

cannot be expected. I£, on the other hand, the dispersion relation is

i

* B. D. Fried aznd S. D. Conte, The Plasma Dispersion Function, New York,
Academic Press, 1961.
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not particularly sensitive to the shape of the‘velocity distribution,
then theoretical results will be valuable in predicting space-charge
interactions in semiconductors.

In the course of this work, many possible distribution func-
tions were considered to approximate the Maxwell-Boltzmann distribution.
There are basically two methods which were found to be useful:

1. Straight line approximations.

2. Algebraic functions involving powers of v and a temperature

term.
The simplest functions which illustrate these two methods are a triangle-
shape distribution and the Lorentzian distribution function as given by
Eq. 81

£(v,) = b/m (81)

(vo - vd)z + b2

where b is the effective temperature term. The Lorentzian and triangle
distributions are sketched in Fig. 13, parts b and c. Also shown for
comparison is the bydrodynamic model (par: a) and the Maxwell-Boltzmann
distribution (part d).

Other distribution functions could also be tried. For example,
the triangle distribution could probably be improved by taking additional
straight line segments near the peak of the distribution and also adding
a "tail" at the velocities further from v,. The Lorentzian could be im-

d

proved by taking higher powers in v such as Eq. 82.
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f(v,) = — 1 (82)

or also
£(v ) —— (83)

Both Eqs. 82 snd 83 give graphiczl results that are closer to the Max-
well-Boltzmann distribution. 1t was found, however, that these refine-
ments greatly add to the complexity of evaluating the integral, and very
good results can be obtained without recourse to such functions.

In this report, we will make a detailed analysis of the four
cases illustrated in Fig. 13: the hydrodynamic model, the Lorentzian
distribution, the triangle distribution, and the Maxwell-Boltzmann
velocity distribution. The hydrodynamic model and the Maxwell-Boltz-
mann distribution will be used to check the overall results, the hydro-
dynamic model because of its simplicity and historical value, and the
Maxwell-Boltzmann distribution as the closest estimate of actual material
behavior.

All the proposed distribution functions, except for the hydro-
dynamic model, are used in the integral appearing in Eq. 68. It is con-
venient to evaluate and discuss this integral for all three functions at
this point before analyzing the dispersion relations for particular numer-
ical resulits. 3Since the distributions are of somewhat different shapes,

it is necessary to decide on a common basis for comparison so that numer-—
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ical solutions will give meaningful results. First, we will normalize

31l distributions so that

The Maxwell-Boltzmann distribution can be normalized in terms

of physical properties of the materisls as previously given in Eq. 79.:

_ . 2
1/2 —m(& -y )
t(v.) ~ (55 ) exp [ —2——12 (79)
o 2nkT 2kT .
Using the Maxweli-Boltzmann distribution as s reference, a
somewhat arbitrary choice was msde to eguate the peak values of the
distvibutions at v The normslized Lorentzisn distribution is then

given as

(v, )= —— - (81)

Then st v = v
@ a

, Y= L
f(v@) " bw

nd in terms of the Maxwell-Boltzmann result of Eq. 79

) /2
1 [TV ,
b= 172 (T)l (84)

)




The integral which must be evaluated for the Lorentzian distri-

bution is

o

I3 b/’TT dv
o

;_m _ 2-2 (' _e\2 + b2
v@ 8 Vo v d)

Since w/B may be complex, the appropriate method tc use is
y

contour integration.

iﬂ b/w d‘?o . i’ b/TT dv
d

B ] -G

ijb/ﬂ,z residues

I}

The residues are evaluated by using well known theorems of

complex algebra. The final result is

o biw dv@ 1
= (85)

| 7

! 2
e (v -2 I P 2 . w
GC’ B> [(VO Vd) + b i} . (Vd + jSb - B)

where
—
+ 1 if Tm(%) < 0
s =
kf 1 if Im(%} > 0
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The significant observation that can be made from Eq. 85 is
that the integral has resulted in a reasonably manageable algebraic
expression. In fact, the result is not so very different from the
hydfodynamic model of Eq. 76. Comparing>the Lorentzian distribution to
the Maxwell-Boltzmann distribution in Fig. 13, we see that the Lorent-
zian is narrower in the region near vd, and for values of v »> V4 it
" does not fall off nearly as rapidly as the Maxwell-Boltzmann distribu-
tion. Alsc, the slope of the Lorentzian distribution is significantly
different in the region near Vqe
The triangle distribution is sketched in Fig. 13c. Mathemati-

cally it can be written as

x._l_(_,.‘ . ; -

£<v0> = bz [ b Vd) + mo} for the region of V4 b to Y4 (86)
f(v.)= -, +=5 (vy+b) for the regi to v, + b (87)
(vo) bz v, bz 4 ) r the region v, to v,

f(v >§ 0 for =2 -+ v, = b and v, + b +» =
o d d
Equations 86 and 87 have been written assuming a velocity dis-

tribution that is symmetrical about v It would be very easy, however,

q°
to change the slope of either side of the triangle to consider unsym-
metrical distributions such as may be encountered at high electric fields

(see Secticn 5.2).

Equations 86 snd 87 can now be used in the integral of Eq. 68
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(88)

Assuming that B is complex, as discussed in Section 5.1, the
integrals appearing on the right side of Eq. 88 can be evaluated either

from tables or by straightforward integration

W d
f(vo)de” 1 1 w B
5 <3 og E—V +
4 ¢ ~ b e
G0 l})——-v> <B 0)
8 o vd—b
w Vd+b
- |log ~B——vo>+<w g
- - v
B o>
Y4 (89)
Vd

+
T~
o
!
<

[oN
S~
€

H
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Substitution of the limits indicated in Eq. 89 and algebraic manipula-

) , . ' i
tion results in a much simpler result for the:integral

1 ,
5 = 5 log 5 {90)

Equation 90 is written in terms of the temperature-dependent quantity
"b" just as was done for the Lorentzian distribution. Using the same
normalization procedure in this case as was used for the Lorentzian

distribution results in

_ (m;w:)l/z (91)

Comparing Egqs. 91 and 84, we see that

btriangle - ﬂbLorentz

(92)

The evaluation of the integral has resulted in an expression
which is in terms of a log function. This results in a transcendental
equation when substituted back into the dispersion relation. Because
of this, an analytic solution wﬁuld be extremely difficult and may not
even be possible. This case can best be treated by computer techniques
and will be discussed further in Section 5.4.

The Maxwell-Boltzmann distribution was given in its normalized

form in Eq. 79
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\1/2 -m(v - v )2
f(v )= (——I—n—— exp( 0 d (79)
o 2mkY 2kT

As mentioned in the introductory paragraph to this section,
this distribution cannot be integrated explicitly. Integrals involv~—
ing this type of a term are usually manipulated into a form that gives
them in terms of the complex error function or complex plasma disper-
sion function. Then, either numerical tables are used or approximate
computer methods are employed to evaluate the remaining integrals. How-
ever, if numerical integration has to be done on the computer anyway,
why not just do it on the integral as it stands? There is no particular
advantage in converting over to the plasma dispersion function. In facé,
the results are harder to evaluate because of their complexity and the
consequent difficulty of estimating the computer integration errors. For
these reasons, direct numerical integration was used. The specific method
will be discussed in Section 5.4.

Figure 14 compares the normalized Lorentzian, triangle, and Max-
well-Boltzmann distribution functions for a particular temperature. It
is interesting to note how well the simple triangle distribution matches
the Maxwell-Boltzmann distribution in both magnitude and slope.

With the results of this section, we are now ready to consider
numerical calculations and make a detailed investigation of the effect

of temperature.

5.4. Numerical Comparison of the Distribution Functions

In Sections 5.2 and 5.3, the usefulness of several different
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Fig. 14. The Maxwell-Boltzmann, triangle, and Lorentzian
distributions at a particular temperature.
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velocity distribution models was discussed and the integrals were evalu-
ated for the cases of interesth‘ All these cases have been investigated
on the Univac 1108 digital computer. Before presenting these results,

a few comments need to be made concerning specific numerical values used
and the general methods of programming.

For programming on a digital compﬁter it was of course necessary
to choose numerical values for all parameters. The choice was made partly
on available data. Indium antimonide, germanium, and silicon are the
three semiconductors for which reasonably good data are currently avail-
able. Any one of these materials could be used.

Most of the experimentai and theoretical work has been done with
InSb. However, there is nothing unique about InSb for space-charge inter-
actions. The lack of observed emission from other materials may, in fact,
indicate that the oscillations in InSb are being generated by some other
process. The theoretical investigation of a different material can,
therefore, add significantly to the understanding of this problem. If
oscillations are predicted for other materials under similar conditions
but are not observed experimentslly, then this should be a good indica-
tion of the lack of correlation between experiment and theory.

Germanium was chosen for the computer investigation because there
is sufficient numerical information available, and because thin layers
are easier to make with germanium than with a compound semiconductor such
as lead sulfide. The material properties that need to be known for the
computer work are the plasma frequencies, drift velocities, dielectric

constants, and electron temperatures. Detasiled discussions of the mate-~




rial properties will be left for Chapter VIIL, but we do need to indi-
cate briefly how the various péfameters were chosen. The plasma fre-
quencies are determined from commercially available doping concentra=-
tions. The drift velocity of the thin layer (Region 1) was taken to be
zero. Layers of the necessary thinness will probably have to be made
by vacuum deposition and this ﬁsually results in polycrystalline mate-
rial of very low mobility. The drift velocity of the other region was
determined from experimental data of.Da M. Chang and J. G. Ruch.® The
lattice dielectric constant was assumed the same for Region 1 and Region
2 and was taken to be 16.0 (see Chapter VIII). Electron temperatures
were varied in the computer program so that no predetermined value was
necessary. It was, however, aséumed that Region 1 and Region 2 were at
the same temperature. Because Region 1 is very thin, this is a good
assumption and greatly reduces the number of curves that have to be
plotted.

The actual methods of progfamming the various dispersion rela-
tions varied somewhat, depending on the difficulty of the solutionm.
All of the sclutions were done for tﬂé free space model discussed in
Sections 4.2 and 4.5, using the dispersion relation of Eq. 52. The
only change was in Tl and T2 as given in general by Eq. 68. For the
hydrodynamic, Lorentz, and triangle distributions, Re(B) and Im(B) were

incremented and the values then tested for minimum error in the deter-

5 D. M. Chang and J. G. Ruch, "Measurements of the Velocity Field
Characteristic of Electrons in Germanium,'" Applied Physics Letters,
Vol. 12, February 1968, pp. 111-112.

- 1QQ -




minantal equation. A search réutine was developed which automatically
searched a given region of the compléx B~plane for a root. It was only
necessary to know the general area of the B-plane where a solution
exists for Re(B) and Im(B). The search routine was then able to find
the solution to about 0.01 percént accuracy in ten to thirty tries.

The Maxwell-Boltzmann distribution was treated similarly with
one additional step for numerical integration. First, the Maxwell-
Boltzmann distribution function itself was programmed so that it could
be integrated numerically. Since it is normalized to one, the results
will approach this value for a proper choice of increments and limits.
When accuracy of the numerical integration was acceptable, the integra-
tion routine was inserted into the prbgram to evaluate the integral of

Eq. 68. Equation 68 for the Maxwell-Boltzmann distribution becomes

| 2
© ( m \1/2 Gm(vo " vd) > d
- \ZmkT/ ¥ 2KT Yo

B

% - (32 - kz) 1- wpi j (93)

The exponential numerator of the integral in Eq. 93 assures conver-
gence for Im(B) # 0. If B is purely real then the integral does not
converge. - However, this is a physically unlikely case, since for all

cases of interest we will find loss or gain and hence complex RB.

5.5. Discussion of Computer Results for Distribution Functions

Figures 15 to 23 give the results obtained from the computer

investigation. Much of the information is self-evident from an examina-
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tion of these figures. It will be the purpose of this section to de-
scribe the more important resul%s,

All the calculations have been made for the configuration illus-
trated in Fig. 3 and with the material properties for germanium as dis-
cussed in Section 5.4. As was shown in Chapter IV, the gain is criti-
cally dependent on the thickness of Region 1. It is therefore necessary
to first find the propagation characteristics as a function of this

N

thicknesé a' before an w-B diagram can be made. For the figures where
B is plotted as a function of "a," the frequency of operation is chosen
as 300 GHz. This choice i1s based on the available plasma frequencies
for germaﬁium, but also this is a range where new devices such as oscil-
lators and amplifiers are badly’.needede

In Figs. 15 and 16, the results are given for the hydrodynamic
model. The important observation to make here is that the gain drops
very rapidly with increasing temperature. At 77°K, gain no longer
exists. The .02°K curves are given for comparison and are essentially
the same as these found in Figs. 10 and 11 for the zero temperature
case (except for a scale factor due to a different vdrift)°

Figdre 17 gives the results for the Lorentzian distribution.
The unbelievably low temperature at which gain disappears is a result
that was checked with a great deal of care. A careful hand calculstion
of the dispersion relation, which will not be given here, verifies the
computer results. This result is so bad that an w-B diagrém was not

made. It is fortunate that the other distribution functions do not give

such a hopeless result.
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Figures 18 and 19 give the results for the triangle distribu-
tion. Here again the important point to note is that the gain is a
strong function of temperature. Although not nearly as bad as the
Lorentzian distribution, the gain drops rapidly for temperatures in the
20°K range.

Figures 20 and 21 give the results for the Maxwell-Boltzmann dis-
tribution. This is physically the distribution we would expect in the
solid, so particular emphasis is to be placed on this result. The most
striking observation is made b§ comparing Figs. 18 to 20 and Figs. 19 to
21. It is evident that the results afe very similar. Over most of the

range for both Brea there is agreement to within +20

1 and Bimaginary’
percent. This is a very important result because it indicates that the
triangle distribution is a very good approximation to the Maxwell~Boltz-
mann result. The numerical integration that has to be done for the
Mazxwell-Boltzmann distribution is time consuming, even on a high speed
computer. There is also some loss of accuracy in the numerical inte~
gration when Bimaginary becomes small. Then the denominator term
(@ - Bvo>2 has very large fluctgations with sharp peaks necessitating
many meore increments in the integration. This further adds to the com-
puter time requirements. The triangle distribution avoids these problems
and is, therefore, a very useful approximate technique for finding grow-
ing wave solutions.

Some general statements can be made about the effect of the dis-

tribution function shape by comparing the results of the Lorentzian,

triangle, Maxwell-Boltzmann, and hydrodynamic models:
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1. The slope of the distribution function is very important
and should match the experimental model as closely as pos-
sible.

2. The velocities that are large compared to v,, i.e., the

a’
"tails" of the distribution, are not particularly important
because they are small in the Maxwell-Boltzmann distribu-
tion. The approximate distribution function, however, can-
not have large ''tails" as does the Lorentz distribution,
This reduces the gain severely.

3. The best results will be obtained by straight-line approxi-
mations. Algebraic equations in powers of v, will not be
able to match the slope significantly better, and will
always have larger values for velocities much greater than
\PE

Unsymmetric distributions, such as would be expected at large
electric fiélds (see Section 5.2), have not been analyzed numerically.

There Qouldkbe no experimental basis for such an analysis. Data are

not available on what shape the distribution function should have. If

such data do become available, then the simplest method would be to take

the triangle and make the slopes different for the two sides. This would
be a very éasy medification in the equations and would probably give some
very interesting results.

The final two figures (22 and 23) represent the theoretical cal-

culations based on an coptimized model. The drift velocity, temperature,

thickness of Region 1, and plasma frequency have been adjusted to give
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the highest expected gain compatible with experimentally measured mate-
rial properties. The data for temperature and drift velocity were taken
from D. M. Chang and J. G. Ruch.® The figures show the results at 33°K
for both the hydrodynamic model and the triangle distribution. In Fig,.
27, the triangle distribution is also shown for 10°K, assuming the same
drift velocity as for 33°K. It is interesting to note how well the
hydrodynamic model at 33°K compares to the triangle distribution at 10°K.
Evidently the hydrodynamic model is too optimistic in predicting gain at

higher temperatures.

5.6. The Effect of Particle Collisions

The subject of charge-carrier collisions in a semiconductor is
a difficult one to discuss and is filled with all kinds of conjectures
and uncertainties. The basic idea is very simple. An electric field
is applied to a semiconductor and a steady current results. The par-
ticle acceleration is evidently limited by some process. If particle
collisions are postulated which cause the particles periodically to
icse their momentum in the direction of the field, then an average
cellision frequency is the natural result. Postulating such a colli-
sion time T = l/vc, where Ve is the collision frequency, the simple

steady-state force equation 1is

- le] E=— (94)

6 Ibid.
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The conductivity for electrons is given as

Then

[

. % c s
Experimentally, we usually know p, ¢, and m , so it is more

convenient to write

Equation 95

e e

=

e q

. - _9

“e " (95)
ueme

can be calculated for a variety of materials, since
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u and n" can usually be found in the literature.
*
For example, consider InSb at 77°K where m = 0.013 m, and

cm2
p_ = 500,000 =——. For this case
e v sec

Vv = 250 GHz
e

This is the simplest possible assumption, but it does accurately
predict Ohm's law for a steady-state field. The computer results to be
presented in this section were calculated on the basis of this model.
However, it cannot be emphasized too strongly that this is only a brief
introduction to this subject. The reason why it is done at all is to
indicate the lower frequency limit for the proposed device. Collisions
will limit the gain in a similar way as the temperature did in Sectiom
5.5. The preferred operating range will be at the higher frequencies,
where collision effects do not reduce the gain below useful levels.

An accurate description of the collision problem is really for-
midable. First, there will certainly be some frequency distribution
for the collisions; the particles have a velocity distribution due to
temperature and do not travel the same distance between successive col-
lisions. Second, it is a very difficult problem to identify the types
of collisions. Are they elastic or not? What is the effective colli-
sion cross section? What fraction of the collisions are between the
particles themselves and what fraction between particles and the lattice?
Does a doped semiconductor behave the same as an intrinsic material or a

perfect crystal? Some of these questions have been discussed in the
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literature, and with a very complicated model could probably be included
in the analysis of the double-stream interaction. It was felt, however,
that the complexity of the theo;y and the uncertainty of obtaining accu-
rate results did not justify the time and effort required. Physically,
we expect the gain to decrease at frequencies where the collisions become
important. The simple theory should indicate the region of the frequency
spectrum where this occurs.

The simple collision model has been numerically analyzed for the
hydrodynamic model and the triangle velocity distribution. It is inter-
esting to note that the collision term as derived above is similar to
the hydrodynamic equation for thermal velocities. In both cases, the
effect is represented by a simple average term. It is, therefore, con~-
sistent to use the simple collision theory in the hydrodynamic equation.

Before presenting the results obtained from the computer analy-
sis, it is necessary to show how the collision frequency term modifies
the dispe:sion relations. This will be done for the hydrodynamic model
and for the triangle wvelocity distributicn.

To modify the hydrodynamic model and its dispersion relation,
consider Eq. 18 in Section 3.4

—J—e—LEZ=<jw+~i§—ijo>vz—j—B—v2p (18)

m Po t

Then following the derivation of Section 3.4 but without omitting 1/t

J = PoY + pvo

- 117 -




For small ac variations

(38,3 + 32 (96)

Combining Eq. 18 and Eq. 96 with the ac continuity equation
gives the result of Eq. 97 for the current density J
e juw w2 E
o P z

= (97)
J (w - BY, T jvc> (w - BVO) - Bzvi

This current density term can now be combined with the wave

equation derived in Section 4.1 (Eq. 29)

2
V2A + uJ - ue é—%-=
ot

Following the derivation given in Section 4.1, it is easy to

see that the new T2 for the hydrodynamic model will be given as

2
w

7% = (52 _ kz) 1- P = 8

(& - jvc - Bvo)(& - Bvo) - Bzvt

The collision term is similarly included in the distribution
function theory by starting with Eq. 60 of Section 5.1, adding the
collision term, and following the derivation step by step.

The new force equation is
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then

and

p ., n, E
Ji - o; iz (99)
,(l " Voi E)(_‘jw + Vo T 38v0i>
Summing Ji’ as was done in Section 5.1, and converting to an
integral gives
Z £(v_ Ydv
2 ( o) o
J = —-jwe E w - (100)
J z “po J (w - Bvo)(@ - v, - Bvo)
This will follow through the derivation exactly the same as
the integral of Eq. 64, and we will get the new expression for T2 as
® f(v_) dv
T2=(32—k2>1—w2[ w_BV(Z)_.?_BV (201)
po ) (W BY)(w - dve - BY,)

For the hydrodynamic model, the T2 term is in suitable form
for use in the computer program. The distribution function model,

however, must be evaluated explicitly for a particular case. As
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stated previously, this will be done for a triangle distribution. To
evaluate the integral for this case, we once again use Egqs. 86 and 87
for f(vo), The method is the same as that uéed in Section 5.3 immedi-
ately following Eq. 86 and 87. The only difference is that, with the
collision term included, the terms do not combine as nicely and the
final result is more complicated.

Letting

and

the final result is

o

(102)

‘ f(vo) dv_ 1 A - 2
J = B)log
_ Ve b2 (- vq (a2 _ 12
SICRAACEER SENIRR -7
ﬂ ¢’ (A = b)(C + b)
+ v, log‘ C2 3 b2 - bR log C - by (A i b)

Equation 102 can now be easily combined with Eq. 101 and the result is
then suitable for use with the computer.
Figures 24 through 28 give the results obtained for the hydro-

dynamic model and the triangle velocity distribution function. The com-
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puter results were obtained for the optimized free-space model that

was previously analyzed in Section 5.5 (Figs., 22 and 23). Figure 24
shows the effect of changing the collision frequency but keeping the
temperature at 0°K. This shows the effect of only the collisions.
Figures 25 and 26 consider the same problem at 33°K. Figure 25 shows
the gain and propagation as a function of the thickness and Fig. 26 is
Vthe w-B diagram. It should be noted that with v = 0, the curves are
exactly those of Figs. 22 and 23. Figures 27 and 28 give the corre-
sponding results for the triangle vel;city distribution. Figure 27
shows the results for both 10°K and 33°K as a function of the thickness
"a." Figure 28 is the corresponding w-B diagram. The important results
from these figures are as follows:

1. The gain is reduced linearly in both the hydrodynamic
model and triangle velocity distribution model as the
collision frequency is increased.

2. If the gain is already low when Ve is not included in the
theory, then gain will not be possible at all unless the
operating frequency is significantly above Ve

3. Collision frequencies for semiconducteors are in the 200
to 300 GHz range at 77°K. When these values are used in
the gain calculations, it shows that device operatibn at
or bélow the collision frequency is marginal.

4, The highest plasma frequéncies possible in semiconductors
correspond to about 10 p in wavelength. It appears pos-—

sible that the interaction could be useful in the 500 GHz
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to 10 y range, where at present there is a need for gener-
ators and amplifiers. However, the next chapters will show
that other effects, such as transverse velocities and cou-
pling of energy from the sample, add serious probléms to the

practical realization of these devices.
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VI. TRANSVERSE AC VELOCITIES

In previous chapfers, the{analysis was developed assuming that
it is possible to realize space-charge bunching in the direction of the
drifting stream of charges. This is almost always possible in electron
beam devices, although the Beam border may no longer be uniform and may
have a rippling due to the space-charge bunching. The boundaries of a
semiconductor, however, are fixed and well defined, so that it may not
be possible to apply the electron beam results directly. Most of the
solid-state devices that have been proposed as analogues to the familiar
electron beam interactions have been analyzed without consideration of
this problem. Including transverse velocities increases the complexity
of the mathematics tremendously. When they are neglected, it is usually
for this reason and not because their existence is unknown.

In this chapter, the doﬁble—stream interaction including trans-
verse ac velocities will be analyzed for a simple case of zero tempera-
ture and no collisions. The simplification to zero temperature and no
collisions is made for two reasons:

1. The analysis is rather complicated mathematically and can
be better interpreted if other effects are not included to
confuse the result.

2. In most analyses, the problem is usually completely ignored,
so 1t is particularly interesting to illustrate just how

important this effect is on the idealized gain mechanism.
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6.1, Derivation of the Wave Equations

For this analysis, we will use the familiar small-signal assump-

tion to derive the wave equations. Assuming the usual ej(mt - B2) wave
propagation, Maxwell's curl equations become

Vx B = -juull (103)

V x H= juek + J (104)
and the force equation may be written as

(jw + $o . 6)3 = n(ﬁ + go % ﬁ) o (105)

. > > -+ -3 > .
The (vo + v) X BO and v x B terms have been neglected in Eq. 105 because
Bo = 0, and v x B is a second~order term always neglected in small-signal

analysésa
The usual small-signal current density and continuity equations

are giVén by Egqs. 106 and 107

> - -
J = oLV + oV (106)

These equations can be separated into transverse and longitudinal
.
parts if we assume a dc drift velocity in the z direction, vV, T V.23

(o]

then
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> -

Jt =0V, (108)
Jz =PV, + oV (109
V.oe 3. - 3] = -3 110
N ¢~ JBI, = -Jue (110)
) _ - A >

J(w - Bvo)vt = nt<Et + v,z X Bt) (111)
j(w - Bvo)vz = nZEZ (112)

The "t" and "z' subscripts refer to the transverse and longitudinal
components, respectively.

A point of interest in Egs. 111 and 112 is that n has been
. ' ; . * *
written as nt and n,.- nis usually defined as n = ¢/m , where m
is the effective mass. There are very few known solids that have an
; S * L ‘ :
isotropic m". m is usually a strong function of the crystal struc-
ture and hence the orientation of the sample. In general, we would

. % 0 0% * 5 ] .
have to write m s my, and m and the corresponding n's. This makes
the problem very complicated. The basic results can be obtained just
as well if we assume only one transverse value. Then it is only nec-
essary to write two sets of equations instead of three.
The preferred orientation for the material is to have the

largest n in the direction of the dc electric field. When n is large,

o’ is small, and this gives the highest conductivity. In the following

analysis, n, will be assumed to be the ''best' walue. Furthermore, we
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will assume that n, can be written as

n, = on where 0 <o <1 (113)

When o = 0 in Eq. 113, we get just the one—~dimensional model
of previous chapters. When a = 1, then we have an isotropic material,

Now, combining Egqs. 108, 111, and 113

ap 1
+ o'z > ~ >
3 = T ) [:Et + v,z % Bt] (114)

Similarly, combining Eqs. 109, 110, and 112

n+
ponszz JVovt ) Jt
i (- By )2 (w - BVO)
J o}
The curl equations are now separated into transverse and
longitudinal components.
> -+ -~
Vt x Ez + VZ b Et = —quHt (116)
> -
V., x E = -juul (117)
-> >
Ve x B +V x H = jueE +J_ (118)
> . > +
Vt X Ht = JweEz + J (119)

- 131 -




Substituting Eq. 114 into 118

aw2
v.xH +V xH = jue |[1- E
t z z £t w(w - Bv )/t
o
(120)
2
awpvo (A N )
- z X B
w(w - Bvo) t
The plasma frequency wp in Eq. 120 has the usual definition
p.n
2 "oz
wp = (121)

Substituting Eq. 114 into Eq. 115 and then putting this result

into Eq. 119, we get

2 2 2
aw Vel w
P L VS W ‘
(w_ By )2 t t Jue (w_ By )2 Z
0 o
(122)
ov_ew
+ ° v . E

Equations 116, 117, 120 and 122 form a new set of curl equa-
tions which no longer contain an explicit current density term. These
equations can now be solved to obtain the wave equations for Ez and

H .
z
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Equations 116 and 120 can be simplified somewhat by observing

that

> = _ o2 .
V. ox Ez jBz x Et = quHt N | - (123)

and

(124)
N 2
i o
. | p >
= Jjwe | —T———_— E
L_ w(w Bvo) t
-
Solving Eq. 123 for Ht
Fo_ - B .= .
Ht wy vt * Ez t Wi z»x Et ) : 4 (125)
Taking the vector cross product of Eq. 125 with z
V- T > B~ <A o ) : S
z><Ht wuzX(vthz)-lawzx szt (1265
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But

2 x (2 x Et) - B (127)

and

N

x (v, x EZ) = vE (128)

Vector identities such és Eqs. 127 and 128 will be used
throughout this analysis. They have been derived by simple applica-
tion of the general definitions. No particular purpose would be
sexved by showing these derivations in detail.

Replacing the appropria;e terms in Eq. 126 by those of Egs.

127 and 128
s xf =dyg - B3 (129)

Equation 129 can now be used in Eq. 124

2
W v el .
T OLH - s - PO A Bz
Vt * Hz gl 8w - Bvo) wy vth wy Et
(130)
o

‘-}"
:jwe l—T_T-—p__—E
w(w Bvo) t

By simple algebraic manipulation, Eq. 130 can be solved for Et
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= o)
E = . (131)

Now, putting Eq. 131 back into Eq. 117

. 2
- ow vV el
e B Ie)
Vtx<vttz>+wu l'e(w—evoj Ve X VB, :
= —jwqu (132)
ow BZ
Jeelt ==~ 7
w k
But,
Vt P VtEZ = 0
and
Vx(v xH)=—v2H£
t t Z t z
Then Eq. 132 reduces to Eq. 133
awz
2 2 ‘ 2 3
VH, + |k (1 —sz B | H, =0 (133)

Equation 133 is the general wave equation for HZe It is interesting

to note that for wave propagation which satisfies this Hz equation
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2

aw ,
E'”( “53>

w ~

can be thought of as an effective dielectric constant.
The wave equation for Ez can be obtained in a similar manner
by combining Egqs. 116, 120 and 122, From Eq. 122 and Eq. 125, which

was derived from Eq. 116,

. wz av_ew N
= 3 -——P | . E
Jwe (w . )2 z (w _ BVO 2 't t

But

Tx (v % B) = VR

which simplifies Eq. 134 as follows:
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J

2 v
Sy voawpeu VZE . 8. av_ew v .3
Wl (w - gy 21tz wh w(w = BV t t
o
(135)
2
W
= jwe |1l - —————P—————z— E,
o,
Substituting Eq. 131 for E._ into Eq. 135
t
vzawzeu av_ew
- j% 1+ 2 viEz + f%‘— w(w S Bv )
(o) :
(136)

aw_v_ ey
£ 1 - wz
wu B(w - 8v ) 2. . p
0 Vth = juwe | 1 -

2
‘ o B2
jwe | 1 - ;EE-— =

e e

o

Equation 136 can be simplified considerably by simple algebraic manipu-
lation. The simplified result is given by Eq. 137, which is the general

wave equation for Ezo
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2] 2
W 2 o oW 2
1- E k(———i—s
- ) - |
VtEZ + T3 55 Ez = 0 (137)
o w - vok

The T2 term is then defined as in Eq. 138

QO)Z wz
2 - &% (1 - -—E) 1 P
2 2
2 w (b " Bvo)
T = 5TF 2 2.2 (138)
ow w - Vok

when o = 0, we get

)
7% = (62 - k2> 1- z;—?E;;—SE (139)
o]

which is just the result we derived in Section 4.2 for the one-~dimen-
sional model with no temperature or collision effects.
With two wave equations for Hz and Ez, Egs., 133 and 137, we

are now in a position to derive the dispersion relations. The one
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-> >
additional equation that is required is a relation between Ez and Ht.
This is needed to match the boundary conditions as was done in Chapter

) . - >
IV. 1In general, it would be necessary to know both Ht and Et' For the

configuration of Chapter IV, however, only ﬁt is required. From Eq. 131

8 uwsvosu
N Vt X Hz + BE 1 - B(w — BVO) vth
E = ; (131)
t 2
ol B2
jwe |1 - —2 _ &
2 2
w k

Since we will require only Ez and ﬁt to match boundary conditions, it
is entirely acceptable to the solution to assume that Hz = 0. This
corresponds to TM meodes in wave guide theory. Another way to explain
this is to note that we were able to write separate wave equations for
Ez and HZ° Then EZ and Hz modes are not coupled and the solutions are
expressible in terms of TM or TE modes.

- Then assuming HZ =0

2
aw_Vv _eu

“"jB 1 - —
B{w Bvo) t 'z

(140)

it
[\*]

Equation 140 can now be substituted into Eq. 125 to get a re-

. ¥ >
lation between Ht and Ezc
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jB _ -
N I Wi 1 'fB(w,— Bvo) 2 x V.E,
Be=ow Ve ¥ B ” 2 (141)
kz(““zg -8
W
But
zZ X Vth = -V = Ez
Therefore,
o’ ]
! _ P
H o=k oo~ BY) z x VE (142)
t  wu 2. . tz
b2 2 %95\
87 -1 (1 - =R )]
v/

With the general equations derived in this section, it is now
possible to analyze many different configurations. The ones of parti-

cular interest will be considered in the following sections.

6.2. Effect of Transverse Velocities on the Layered Structure

The limiting case of a = 0 was shown (in Section 6.1) to re-
duce the equations to the one~dimensional analysis of Chapter IV. 1In
this section, we will consider the situation when 0 < a < 1, and apply
this case .to. the layered structure with metal boundaries that was

analyzed in Section 4.2. This is mathematically the simplest model
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and will be illustrative of what can be expected in other configurationms.
To begin, let us rederive the dispersion relation with trans-
verse velocities included. The configuration is that of Fig. 2. For

the coordinates used in Fig. 2, ﬁt -+ Hy° With only an Hy component,

: =253
z * VE = % Ezy

~ 2 -
aw
2| LT &
_ jk w( Vo) 3
= — E (143)
Yy wu 2 X "z
9 9 o
B° - k(1 - =2
w

Following the derivation of Section 4.2, assume the same field depend-

ence in Region 1 and Region 2.

ea]
}

1= Bl sinh Tl(a - x)

E

22 B2 sinh Tz(b + x)

Match the EZ and Hy fields at x = 0

Ezl = EZZ

B, sinh <Tla) = B, sinh (sz) (144)
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and

[\~
’-—I
1
€
€
|
w |
<
o
'—l
p—_—y

For simplicity, o has
Region 2.

Combining Egs.

BT

vyl Ty2

cosh (Tla)

- 2
- p2
' w(w - Bvo2)

B2T

9 cosh (sz)

been assumed to be the same in Region 1 and

144 and 145 to eliminate B

1
— =
aw 2
62 2 (1 - e
‘ 1 2 tanh (Tla)
B ' 2 2
- oW 1 lel
wfw - Bv
L ( Ol) .
| o 2\ |
62 _ 2 (1 p2
2 w2 tanh (T2b>
- 2 2
L oW 2 k2T2
wlw - Bv
T )
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This is the dispersion relation that must be solved in general to get
the propagation characteristics as a function of a.

To check the result, when a = 0, Eq. 146 becomes

) (éz _ ki) tanh (T a) (é ) tanhz(sz)
koTy

(147)

where the T's are now given by Eq. 139. As expected, this result is
identical to the one-dimensional analysis of Section 4.2 (Eq. 47).

The investigation of Eq. 146 for 0 < o < 1 was done using the
computer techniques described in Chapters IV and V. The results of
this investigation are summarized in Figs. 29 and 30. First, the
propagation constant was investigated as a function of "a," the thick-
ness of Region 1. This is necessary so that a value of "a" may be
picked for the w-B diagram. As can be seen from Fig. 29, the peak of
the gain curve shifts to smaller values of "a" as a is increased. The
shift becomes noticeable at o = .01, For larger values of o, the value
of "a" for peak gain begins to shift very rapidly as a function of a.
The gain regions become narrower and harder to find. This effect can
be interpreted by referring back to the effective dielectric constant
derived from Eq. 133. It can be seen that o has the effect of increas~
ing wpo In Chapter IV, the relationship of wp to "a'" was discussed in
detail, and exactly this type of behavior was observed.

The w-B diagram is shown in Fig. 30, The thickness of Region 1
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Fig. 29. Complex B as a function of "a" for anisotropic conductivity,
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has been adjusted for each value of d to be near the optiﬁum value.

The important observation to be made from Fig. 30 is that, as in Fig.
29, o begins to have a noticeable effect for o > .0l. Once the effect
becomes noticeable, further increases of o alter the results drasti-
cally. The frequency range over which gain is possible becomes very
nérrow as o increases. In fact, as o gets closer to one, this range
becomes so narrow that it cannot be found by numerical techniques.

From these cometer results, it appears that the conductivity will have
to have an anisqttopy of more than 100 for the one—dimensional space-
charge model tﬁwbe applicable.

When o = 1, a computer search of the w-8 plane does not show
ény growing waves., The dispe:sion relation for the layered structure
(Eq. 146) can be solved in the slow-wave approximation to check this
result. If the slow-wave approximstion is made so that 82 > kz, then

Eq. 146 can be simplified considerably:

B2 tanh (Tla) BZ tanh (T2b>
- = ‘ (148)
2 sz 2 kZT
“p1 111 By )

1- 1 -
wiw - Bvolj L wiw - Bvoz L

For the glow-wave approximation, T, and TZ’ as given in general by

1
Eq. 138, reduce to




that kl = k2 and Vo< 0. Then, Eq. 148 reduces te Eq. 149.

_ tanh (Ba) _ _ tanh (Bb)
2
®

1 "“g
- - P
1 2 1 w(w - BVOZ)

(149)

@

Equation 149 can now be inveétigated to see if instabilities
are possible. This can be done by locking for complex B or complex w.
Since the B's are a part of the tanh functions, they are difficult to
find. Equation 149, however, can be solved for w without difficulty.
By Sturrock's criterion, as discussed in Section 3.5, it is possible to
consider complex w for resl B. If it can be shown that w is real for
all real g, then instabilities are not possible. Equatioﬁ 149 is solved
f2r w by expanding all the terms and grouping the like powers of w in

the usual manner. The result of this manipulstion is

2, N 2
3 ( 2 wpz tanh (Ba) + wpl tanh (Bb)
w = {Bv )m -
02

tanh (Ba) + tanh (Bb)

w
(150)

. 2
i Vot
tanh (8b) ”pl BVQZ

* Tanh (Ba) + tanh (BD) -

0

Equaticn 150 has the general form

3 2
w = aw - bw+c=20
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which can be rearranged as follows

L - blw —-%)

(151)
wz(m - a)

Equation 151 is in the form of a positive feedback equation for which
a root-locus plot can be made. The loci will depend on the values of

the zero at c¢/b and the pole at a., The two possibilities are illus-

trated in Fig. 31,

Imag. Imag.
complex w-plane

2 c a 2 a c
b Real b Real
axis axis
c c
a » b a < g

Fig. 31. The two possible root-locus plots of Eq. 151.

It is evident from Fig. 31 that if ¢/b < a for all values of
real B, then there will be no complex w and instabilities will not be

possible. The factors in Eq. 150 that correspond to a > c/b are given

as
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2
? tanh (8b) wpl Svoz
Poz 7 2 tonh (Ba) + w2 tamh (Bb)
pr anh (B4 bl n
which simplifies to
§ 1
1> 5
w_ . tanh {Ba)
p2 »

5 + 1

wpl tanh (Bb)

For real B, the inequality is satisfied and there are no complex solu~

tions for w.

6.3. Methods for Obtaining Anisctropic Conductivity

Two possible methods of cbtaining the necessary anisotropic
conductivity are:

1. The material itself is anisotropic with one preferred

direction of conduction.

2. A magnetic field is used to "focus" the beam in the solid

as is done in electron beam devices.

The prospects for finding a semiconductor with the necessary
anisotropy are not promising. Indium antimonide and indium arsenide
have»nearly spherical energy surfaces and consequently an almost iso-
tropic conductivity. Both germanium and silicon have ratios of about
2 to 5 for effective masses in the longitudinal and transverse direc-

tions. To satisfy the theoretically calculated values for the aniso-
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tropy, a material should have a ratlo of transverse to longitudinal
conductivity of .0l or smaller. This would give acceptable results for
the gain as calculated in Section 6;2. It is difficult to imagine a
semiconducting solid that would have a crystal structure suitable for
this large conductivity anisotroéy.

The effect of a magnetic field on the conductivity can be de-
rived easily by starting with the force equation used in Chapter III

(Eq. 15). Neglecting the temperature term, we have

-+
dv _ -|e > > -+ >
T - o (E+ v x B) - vV (152)

The current density is defined as

al
=

+
J =

(153)

where 0 is the conductivity tensor. The ac current density can also

be written as

3 = ne$ (154)

The current density due to the dc drift will be neglected in the
present:analysis. The intent of this treatment is to show what kind
of anisotropies can be produced by a magnetic field; the addition of

dc drift velocities complicates the analysis considerably.

&

Jut dependence and

- If Eq. 152 is solved for 3, assuming an e
E = Bo;’ and substituted into Eq. 154, the conductivity tensor follows

immediately.
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(vc - jw) “b 0
. \2 2
V —;m) + (\)c-jw> +wb
P2 - v - jw
= _lel™n b ( c ) \
¢ = m . '2 2 ] O (155)
(§ - jm) + wy (@ - jw + Wy
1
0 0 z o
(\,C - jw
where
eB
oz
[ =

Neglecting the collision term in Eq. 1535, the conductivity

tensor reduces to

R 4V
i) b
2 2 T 0
U.)b LL) £ 4))
_ 2 =i s,
’E:ieil“ TR A 0 (156)
9 &9
0 0 -1
Juw
- _




TN

If w is now made > 10w, then wi - wz = w,_ and

—jw 1 0
2 w
Wy b
2 ,

5. leln -1 - 0 (157)

m Wy wZ
b

0 0 %%

| _

It is evident from Eq. 157 that an electric field in the z~
‘direction, the same direction as §, will result in a current demnsity
about 10 times larger than from E fields in either the x- or y-direc-—
tions

For operation at 300 GHz in germanium, which has an average

effective mass of .22 m s

0 11

% 12
2
oot 22(1_&8._.@__> 23.6 Wa
4 1.75 x 10

This field is about ten times larger than practical in most
laboratory situations. Either the frequency of operation must be

lowered or the conductivity anisotropy cannot be made as large.

- 152 -




. There appears to be a rough correlation between this assertion

and the observed results in InSb. Broadband emission from InSb has

been observed in the 8 to 25 GHz range.?

The magnetic fields required
are usually about 2 kG at the lower threshold for emission. In InSb,

a magnetic field of 2 kG corresponds to Wy of

11
eB _ (1.75 x 10*%) (.20) 5.7 % 102

w. =

b * .013

E

Then

“b
fb = i 430 GHz

The value of fb is about 20 fimes larger than the emission
frequency. This would give an anisotropy of about the necessary
magnitude predicted by the results shown in Fig. 30, It should be
noted, however, that collisions were neglected for this calculation,
and in the actual material they will be important. It may even be
more meaningful to compare Wy to Vo instead of to the emission fre-
quency.

Devices may be possible at lower frequencies, but our main in-

terest is in the higher frequency range and for no dc magnetic field.

The results of Chapters IV and V indicated that the submillimeter-to-

' B. Ancker-Johnson, '"Microwasve Emission from Nenequilibrium Plasmas

in InSb Subject to Magnetic Fields," Journal of Applied Physics,
Veol. 39, June 1968, pp. 3365-3378.
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infrared region of the frequency spectrum is particularly suited for
the semiconducting materials. Yet, the results of the transverse con-
ductivity analysis indicate that operation in this region is not practi-
cal. We are forced to conclude that an adequate solution cannot be
given at this time.

Unless the transverse conductivity problem can be resolved,
bulk space-charge interactions in the submillimeter-to-infrared region
of the frequency spectrum without very large dc magnetic fields do not

sppear possible.
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VII. COUPLING ENERGY FROM SPACE-CHARGE WAVES

A problem common to all interactions involving plasma waves is
how to couple the energy out of the electron stream. The difficulty
is due to the very short wavelength inside the material compared to the
free-space wavelength. To illustrate the problem more specifically,
consider a simple situation of a material with a planar surface in the
y-z plane and an ac current density J near this surface in the z-direc-
tion. This will correspond to the general configuration that has been
investigated throughout this report. The current density J can be

written as

(158)

This assumes the usual plane wave propagating in the z-direc-
tion and with space-charge bunching in the z~-direction only. For the
general case, the fields and vector potential are related to the cur-
rent density by Egqs. 159 to 161.

N f Z >y A _
Az, t) = ) ——-———“Zg) d (Wt = KRy, (159)

ﬁv'

B=Vx& (160)

> -
gu [;; N ﬂ_é_é_),]
k

-
It
<3y

(161)
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where R = ; - g'!; and ;' refers to the source point, ¥ to the field
point.

It is appropriate to assume that r' << XA, because the wave-
length inside the material will be on the order of the electronic wave-
lengthAAe = %jAo This assumption will restrict the results to small
samples. A more general discussion would be very much more complicated,
and even in that case the results are 6nly of order—-of-magnitude accu-
racy, because there is no method for calculating the total ac current
in the sample from the small-signal theory used in this report.

Furthermore, it is also possible to assume that f > r'nso that
R = vr. This is simply the far-field approximation. This approximation
simplifies the calculations considerably. It should predict accurate
results for all experiments where wave guides do not enclose the sample.
Whenever the experiments are performed inside a wave guide, then the
znalysis should be done for the particular configuration used. The
present analysis will be adequate for making order-of-magnitude esti~
mates of the radiated energy.

For these two approximations, Eq. 159 can be written in a con-

giderably simpler form:

eJ(wt - kxr) -

4dur J
v

LE, t) = 2 IGEY) av! (162)

The integral of Eq. 162 can be easily evaluated for the current density

of Eq. 158
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Ty t jwte, { ~iBz" . .,
J(x')dv® = JOe z J e dv
Vt V!

The integration over the x' and y' coordinates will just re-
sult in some constant area determined by the size of the current carry-
ing region. Let this value be denoted by 8'.

Then,

j F(z'yav' = JOS“ejwté' i e"IBZ 4, (163)

It is immediately obvious from Egq. 163 that if the limits of
the integral are an integer number of space~charge wavelengths, then
the integral is equal to zero. Therefore, X will take its value only
from the last fraction of a wavelength.

The time-averaged radiated power will be given by the real part
of the complex Poynting vector.

-

P =~% Re(E ® ﬁ*)

Equation 163 can be combined with Eq. 162 tc get the vector potential,

and then this result can be substituted intc Egqs. 160 and 161 to write
S

the Poynting vector in terms of the vector potential A. If the vector

potential is zero, we can immediately conclude that there will be no

radiated power. Any contribution to the total radiated power will be




from the fractional portion of a wavelength near the end of the sample.
This is a very inefficient method of coupling and has led to other pro-
posed schemes for getting the energy out of the sample. However, be-
fore discussing the more complicated proposals let us derive an approx-
imate equation for the power radiated from a narrow slot, as shown in

Fig. 32. This should give the same result as assuming that the radia-

____ Thin metallic

T surface
Thin
N semlconductor _qﬂ %&__

//////////////////// -

base; wpz, Vo

Fig. 32. Layered-semiconductor configuration with a narrow slot,.

tion cancels everywhere except at the last fraction of a wavelength. 1In
Fig. 32, the ac current will be assumed to be near the boundary between
the semiconductors, and the metallic surface will eliminate radiation
everywhere except in the region of the slot.

To evaluate the integral in Eq. 162, the simplest case is to as-

sume a sinusoidal current and then to assume that d, the width of the gap,
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is one half of a space-charge wavelength. Then,

Jlwt - kr)
. e /
B bry KZII d

>4

>; (164)

where I, is the ac current producing the radiated power. Once again,
e
the time-averaged radiated power will be given by the resl part of

the complex Poynting vector.

P = % Re(E x HY) - (165)

Equation 164 for the vector potentizl can now be substituted into Egs.
160 and 161. When the result of that substitution 1s used in Eq. 165,

E~

the following expression for the Poynting vector is obtained,

2
27T kdy
3 _ 1 159 2 s
P = 5 %‘ 4F£*K i‘ % nl% a (166)

whoe n is the upit vector normal to the Zadiating surface.

The total radiated power is found by integrating Eq. 166'over
a very large hemisphexical surface in order to satisfy the far-field
approximation, énd since radistion will be seen only from one side of
the sample. To do the integrati@ﬁg we must assume that the width of
the sample dces not zffect the radiated fields. This may or may not
be a good sssumption for all cases, Eut should be accurate in the regien

where radiated power is highest.
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2
I_kd 2 7l.d
p=2L li(l > | sin’e d8=80< 17 (167)

)

Equation 167 for the total radiated power has been derived with
some very crude approximations and will probably not give very accurate
results. However, this does not eliminate its usefulness. The purpose
of this discussion 1s to get some estimate of the magnitude of the power
that can be expected for typical operating parameters that have been
specified throughout this report. Equation 167 should be adequate for
this purpose.

The most familisr situation to which Eq. 167 can be applied is
the configuration investigated in Chapters IV and V, where germanium
was used as the semiconductor. AlL the necessary data are already
available for this case and it is easy to do the calculations. The
similarity between Fig. 32 and Fig. 2 for the configuration with
metallic boundaries is obvious. The growing wave is still assumed to
be present at the surface between the two semiconductors.

To evaluate Eq. 167, we need to have numerical values for Il,

d, and 2. I, is the ac current which contributes to the radiated power.

1

There is no way that we can get an exact value for I. from small-signal

1
theory. I, will be determined by the length of the gain region, the
smount of gain possible, or the natural saturation level that is en-

countered in all amplifiers. An approximate upper limit can be set for

L} by letting the ac current equal the dc current. This would mean
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that there is 100 percent bunching in the stresm. In a practical de-
vice, the bunching will probably be less because of the randomizing

effects of temperature and collisions. To make the calculations, it
will be convenient to derive the dc current for the radiating region

and then assume some fracition of this value as the ac current.

o

nevs

i

S is the effective area of the radiating current and will be
given by the width of the sample and a depth of about one electronic
wavelength into the sample.

The slot width d was assumed to be one-half of an electronic

wavelength,

o
it
o
>
il
ECTRE
o
et

where A is the free space wavelength determined by the frequency se-
lected for the interaction.

In Chapter V, the operating frequency was typically chosen
around 300 GHz. For a plasma frequency in this range, n = 3 x lO15
em - for germanium. To evaluate S, we need the sample width, and
this is typically two to three millimeters. The maximum drift velocity

v varies from 1.0 to 1.5 x 105 m/s. We will choose a value of 1.5 x

lO5 m/s.
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Putting 2ll these values intc Eq. 167, we can now calculate

the total radiated power.

P = 80 E3.14)(3 x 1015)(106)(1,,6 % 10"19)(1.,5 x 10°)

(2,5 X 10’3)(,5x x 1077) (L2514 x 10_3)/){'2

P = .4 uwatts

Assuming a 50 percent bunching of the beam instead of 100 per-
cent, we would get P = .1 pwatts and so on for other values of beam
bunching.

This calculation can be done for any frequency and for other
materials. For example, InSb can be used in the far infrared at about
10y. For this wavelength the power output is about 600 pwatts for
50 percent bunching.

One may observe that as the plasma frequency increases, the
ac power output also shows a corresponding increase. For example, com-
pare the 300 GHz to the 10u calculations. However, the conductivity
also increases and more dc power 1is required to cbtain the necessary
electric fields. This problem will be discussed further in Chapter IX.

‘It is apparent from these calculations that even for strong
beam bunching, the output powers are very low. Power outputs of a few

microwatts are difficult to detect experimentally. Devices with these
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output levels certainly would not serve as useful oscillators or ampli-
fiers.

The observed microwave emission from InSb with various sample
configurations, usually large compared to le, has been at very low
power levels -~ on the order of a few microwatts. This would agree
with the approximate results obtained in this chapter.

A few attempts have been made to improve the coupling to obtain
increased output power. G. A. Swartz and B. B. Robinson! have cut very
narrow slots into samples of InSb and obtained somewhat improved power
output and also coherent emission. R. D. Larrsbee and W. A. Hicinbothem”
hzve proposed a periodic laminar axray to bleck out alternate half-wave-
lengths over the entire sample length and hence to realize much higher
powers. They did not observe the expected increase in power, and con-
cluded that the oscillations may be due to other than space-charge effects.

For a space-charge wave interaction,; the periodic structure as
proposed by Larrabee and Hicinbothem should work very well. The problem
is one of constructing such 2 structure. At 300 GHz the electronic wave-
length is about one micron. The slots weould have to be of about this
dimension. Even the well-developed thin-film vacuum deposition technol-

ogy is only able to approach these dimensions. For effective coupling

G. A. Swartz and B. B. Robinson, Coherent Microwave Instabilities in
a Thin Layer Sclid-State Plasma. Princeton, New Jersey, RCA
Laboratories, 1968.

b

R. D. Larrabee and W. A. Hicinbothem, "A Laminar Slow-Wave Coupler and
its Application to Indium Antimonide," 7EEE Transaciion on MTT,
Vol. MIT-15, June 1967, pp. 382-383.
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there would have to be perhaps one hundred or more of these slots.
Even if the slots could be made to the required dimensions, the entire
array must have an accuracy to within Ae/4- For a structure of many
slots this becomes a formidable undertaking.

In conclusion, it appears that even though the gain may be high
inside the material, the energy cannot be effectively coupled out of -
the sample with the techniques proposed in this chapter. The dimensions
of coupling structures become so small at the higher microwave frequen-

cies that with present technology they cannot be constructed.




VIII. MATERIAL PROPERTIES

The accuracy of the computer results described in Chapter V
relies heavily on accurate values for the various material properties
that need to be included, such as the plasma frequency, dc drift veloc-
ity, and electron temperature. In addition, any proposed experiments
to verify space-charge waves, or to investigate gain mechanisms, should
be performed on the basis of accurate information on the materials that
are selected. Therefore, the purpose of this chapter will be to discuss
and tabulate some of the important properties of semiconducting solids
which are necessary to a theoretical or experimental investigation of
space-charge wave interactions.

In this chapter, we will first briefly discuss the general re-
quirements for the plasma frequency, drift velocity, electron tempera-
ture, and collision frequency. Numerical values for these parameters
were used in the computer results of Chapter V. Then a brief discus-
sion will be presented on sbsorption properties and dielectric constants
of the materials. This problem has not been included in the analysis
to this point. The assumption has been made that the background lattice
does not affect the interaction except through collisions and tempera-
ture. There are other mechanisms which sometimes cause high losses for
a wave propagating through a crystal lattice. Although a detailed
knowledge of how the absorption arises is not necessary to the present
discussion, the absorption of the material should be known and compared

to the gain obtainable from the interaction mechanism. The permittivity
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(or dielectric constant) has been agsumed to be independent of fre-
quency. The validity of this assumption will be discussed briefly.
A table of the important material properties summarizes the

information discussed in the chapter.

8.1. Plasma Frequencies

The plasma frequency is defined as

2

o = |2el
£

P &

o

8

It is determined by the permittivity, effective mass, and
charge densityn The effective mass and permittivity can be assumed
approximately constant. Then the plasma frequency is proportional
to the square root of the carrier concentration. The carrier concen-
tration is determined by the impurity doping of the semiconducting
matexial and can vary over many orders of magnitude. In InSb, for

; . . ' 13 -3
example, n can be varied in 3 commercial process from 1.1 x 1077 cm

to 2.28 x 1018 cm_3° This corresponds to plasma frequencies, wp,

o A1l 14 .
from 4.0 % 10 to 1.88 x 10 or from 64 GHz to a wavelength of 10u.
Similarly, germanium can be varied from about 30 GHz to about 50u.
Other semiconductors have frequency ranges that are larger or smaller.
The values for typical materials are given in Table II at the conclu-

sion of this chapter.

The important result is that the plasma frequency will deter-—
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mine the upper limit of the gain region. In Chapter V, we found that
gain was not possible at frequencies higher than about wpl/Z° From
Table II, we can then conclude that InSb will give gain up to about

ZOﬁ in the far infrared. Shorter wavelengths will not be possible with
this kind of an interaction. Most of the other materials will be lim-
ited to wavelengths longer than about 100u oxr 3000 GHz in frequency.
Other space-charge interactions may have a different dependence on the
plasma frequency, but clearly it is one of the important properties of

a plasma model.

8.2. Drift Velocity and Electron Temperature

The drift velocity of the carriers determines the propagation
of the space-charge waves. The electron temperature adds a velocity
spread which decreases the gain. For low loss, the drift velocity
should be high compared to the width of the thermal velocity spread.
This is a difficult condition to meet experimentally. Applying high
electric fields to achieve the high drift velocities also causes
heating of the electrons, thereby raising their temperature and thermal
velocitya‘ Furthermore, at high electric fields, the simple linear re-
lationship of velocity vs. E field is no longer valid. Impact ioniza-
tion and other quantum effects come into play and effectively limit the
highest attainable velocity. Before the saturation region is reached,
thexe is a region of nonlinear behavior which should be avoided, if

possible, in an experiment. Figure 33 shows the result for velocity as a
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Fig. 33. Velocity field characteristic of electrons in germanium.

function of electric field for Ge.

velocity of about lO7

1.0 %10

Drift velocity {cm/s)

1.5 x107

7

0.5x10’

=
T
w
g
Ut
o
~J
(o]

Electric field (kV/cm)

As can be seen from Fig. 33, a

cm/s is possible in Ge at low temperatures.

1

7
InSb, velocities of the order of 5 x 10° cm/s appesr to be practical.?

M. Glicksman and W. A. Hicinbothem> have calculated electron tempera-

‘as a function of electric field for InSb.

at a 77°K sample temperature the electron temperature is on the

M. Chang and J. G. Ruch, 'Measurement of the Velocity Field
Characteristic of Electrons in Germanium," Applied Physics Letters,
Vol. 12, February 1968, p. 112.

Glicksman and W. A, Hicinbothem, "Hot Electrons in Indium Anti-
monide," Physical Review, Vol. 129, February 1963, pp. 1572-1577.

¥ 1hid., p. 1576,
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order of 150°K at a drift velocity of about 5 x 107 cm/s, which corre-
sponds to a field of about 200 volts/ecm. Additional results are shown
in Table IT at the end of the chapter. In performing an experiment,

any observed output can be optimized by changing the dc voltage across
the sample. From the discussion above we can see that there will have
to be a compromise between highest possible drift velocity and a reason-

ably low electron temperature.

8.3. Collision Frequencies

As discussed in Section 5.6, a rough estimate of collision
effects is possible by assuming a single effective collision frequency.
The computer investigation showed a significant decrease in the gain
when the collision frequency Vo became on the order of the operating
frequency. 1In Table IT, the collision frequencies, based on the simple
model, have been calculated for some of the materials. Most of the
collision frequencies are in the 150 to 300 GHz range at 77°K. This
will limit the lower frequencies for which most space-charge inter-
actions may be used. The collision frequency range is about ten times
higher than the usual microwave frequencies. If an interaction is to
be investigated in the 10 to 50 GHz frequency range, then the theory
must be developed assuming that cecllisions will dominate the inter-
action mechanism. Some of the work with InSb has been done on the basis

of this kind of an assumption, e.g., B. B, Robinson and G. A. Swartz."

“ B. B. Robinson and G. A. Swartz, "Two-Stream Instability in Semicon-

ductor Plasmas," Journuzl of Applied Physics, Vol. 38, May 1967,
pp. 2461-2465.

- 169 -




ol

8.4, Absorption Coefficients snd Permittivitie

The computer analysis of Chapter V was based on an electron
stream model which ignored the losses due to lattice eicitationu Any
losses due to the crystal lattice will reduce the gain coefficient.
Fortﬁﬁately in the microwave and far infrared frequencies, semiconduc-
tors have comparatively low losses.

Figures 34 to 39 show the experimental results of the absorp-
tion of some typical materials as found in the literature. The gain
coefficients obtained from the computer work of Chapter V were lO3 Cm_l
oy large%n A loss coefficient o of 100 cm_l would, therefore, not be
troubiééome, This compares well with the experimental results shownrin
the figures. The only troublesome frequencies are the occasional lattice
absorption peaks as shown explicitly for gérmaﬁium in Fig. 38. The InSb
curveg of Figa 39 also show a high-zbsorption region around 60 Y. These
regilons éhouid be avoided in choosing the operatiﬁg frequency. Some of
the more important regicns have been noted in Table II.

Figure 34 gives the trasnsmission for some common semiconductors
in tﬁe‘infraredo The sharp drop in transmission near 1 u is known as
the absgrptibn edge and is due to bound‘electron excitation. The trans-—
mission properties shown usually continue down intp the microwave region,
except forrﬁhe occagional pesks mentioned sbove. Figure 35 gives the
corfesponéing results for the III-V semiconducting compounds. Figure 36
gives the absorgtimn on InSb as a function of tempefature for a sample
of a carrier concentration that could be used in the far infrared with

the type of interaction proposed in Chapter IV. The absorption coeffi-
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Fig. 34, Transmission of Si, Ge, Se, and Te.>

5 G. K. T. Conn and D. G. Avery, Infrared Methods, New York, Academic

Press, 1960, p. 44.
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York, Pergamon Press, 1961, p. 226,

2000

NEESEN

. Kaiser and H. Y. Fan, "Infrared Absorption in Indium Antimonide,'

Absorption coefficients for InSb.’

. Hilsum and A. C. Rose-Innes, Semiconducting III-V Compounds, New

Physical Review, Vol. 98, May 1955, p. 966-968.
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C. Hilsum, op. cit., p. 228.

. S. Moss, Optical Properties of Semi-Conductors, London, Butterworth
Scientific Publications, 1959, p. 141.
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ciént would be low compared to the expected gain, provided other con-
- ditions could be met. Figure 37 illustrates the effect of carrier
concentration on the absorption edge. An interesting result here is
that the peak transmission is not significantly affected by the differ-
ent carrier concentrations. Figure 38 gives the absorption of the ger-
‘manium lattice excluding the free electron absorption. Since the elec-
trons are producing the gain, their absorption is not important. Only
the losses due to the lattice will be detrimental. Figure 39 shows
the transmission of InSb over a wide frequency range in the far infra-
red.

The relative dielectric constant, e, for germanium was taken
as 16.0, for the computer work of Chapter V, at all frequencies. The
dielectric constant is not strongly frequency dependent in the low
absorption region for any of the materials investigated. There is
usually only about a 10 percent change in the dielectric constant from
infrared to microwave frequencies. The only precaution is to avoid
the occasional absorption peaks due to lattice excitation. Tempera-
ture will also affect the dielectric constant, but here again the
effect is rather small and can probably be neglected. As an example,
the dielectric constant of GaAs at 70.2 GHz changes only by 1.5 percent
from 100°K to 300°K. Relative dielectric constants for typical mate-

rials are given in Table II.
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TABLE 11

PROPERTIES OF SOME USEFUL SEMICONDUCTORS

1. Available carrier
concentrations for
n-type materials.

{
i
!

P w

= 2,1%1013 o 6.7x1013

P (-90 W

(~30 u)

2. Plasma frequency w Dielectric Constants Important
i Cha ; for Several Pertinent Absorption
Material corresponding to L 11,12 Bandsl}
_, these concentrations. Frequenc;es. :
"3, " 'w,. converted to GHz
‘ ot u for more con-
' " venient reference.
n o=:Ll,1 x 1013 cm_3 to e = 16.0 at 8 pm. Strong band
2.28 x 1018 em ~3 e = 15.7 {(due to lattice {at 52 um.
InSh w. = 4x1011 to 1.88x101% only in i-r). Weaker bands
(64 GHz) (10 w) €o = 17.5 (estimate of at multiples
i dc dielectric const.) | of 52 um.
13 -3 18 =3 . . . .
4%1077cm T to 1.x107Tem T{e = 16.0 over a wide Dispersion
11 13 frequency range from | region at 32
Ge w_ = 1.9%10 to 3x10 dc to infrared. GHz. Free
P (30 GHz) (-50 u) carrier dis-
persion around
24 um.
3xlOlocm_3 to 15x1018cm_3 € = 11.7 in infrared. Fairly strong
si w_ = 5.5x10% to 3.2x1013 |¢ = 13.7 at 24 cHz. band at 9.1
(.88 GHz) (-30 ) : ym.
5x10;6cm—3 to 1°x1018 e = 11.0 at 2.5 - 10 GHz.
Gahs | w_ = 1.4x1013 to 6.4x10%3)¢ = 13.0 at 70.0 GHz.
(~120 u) (~30 u) je = 13,05 in infrared.
16 =3 .
1.8:x 107" em ~_to e = 14.0 (probably in
oAs 1.5 % 10%2 cem™3 infrared).
; w o= 1,42 x 10 to
P 4,1 x 1013
9(~120 u)  (~40 w)
3x10;6cm_% to lnxlOZO’ g = 17.5 - 18.0 for 1 Weak absorp-
o = 6x10%2 to 3.5x10%% to 4 um. Little tion due to
PbS P »:(~300 ) (-6 W) change at longer free carriers
wavelengths. in infrared.
Strong lattice
absorption
- near 100 pm.
1. x lOl/ cm_3 to ¢ = 14.0 (probably in
Gash ' 1. x 1018 o3 infrared).

et
s

- |

Publishers, New York, 1965.

et

27, 8.

Fublications, London, 1959,
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TABLE II - CONTINUED

PROPERTIES OF SOME USEFUL SEMICONDUCTORS

Drift velocities vs. E field Collision frequencies | Electron temper-

(near saturation) atures vs. drift
£ = velocity.
v ®
HeMe

- 10759x1011/uem*

Saturation velocity at 2 E = 300 v/cm!3,

E = 300 v/cm,'3 u = 50 me-at 77°K electron temp =

vg = 5 x 107 cm/sec. in region sec 230°K; E = 150
just below saturation o 7 L7 v/cm, electron
(at 77°K) H temp = 130°K

fv = .300 GHz at 77°K

Velocity saturation begins 2
= 1000 v/cm at 300°K'* b= 3.8 1 4t 779K
= 100 v/em at 77°K sec
v = 1.0 x 107 cm/sec. near f = 200 GHz at 77°K
saturation (at 77°K) v
Drift velocity saturation at Hoa 7=2.6
vy = 107 cm/sec. at 300°K om
This corresponds to w41 oo 2T 77°K

E field = 10% v/cm.
£, = 165 GHz at 77°K

p min v

f not needed

p min Y

f not needed

p min v

f not needed

“p min Y

f not needed

13

i, Glicksman and W. A, Hicinbothem, op. cit.

'“ D, M. Chang and J. G. Ruch, op. cit.
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IX. EXPERIMENTAL INVESTIGATION

A limited experimental program was pursued during the theoreti-
cal investigation described in this report. A brief description will be
given of some of the techniques available as an aid to future work. It
is possible that the thermal and transverse velocity problems, described
in-Chééters V and VI, can be overcome with a different configuration and
the use of a magnetic field. In that case, it wéuld be desirable to try
experimentaily to verify the interaction. The following sectioﬁs will
very briefly describe some of the problems to be expected and what can

be done to overcome some of them.

9.1, DC Energy and Heat Dissipation

The first experimental problem is that of heat dissipation and
the practicality of getting the higher drift velocities. For example,
assume that the semiconductor is germsnium as in the computer work of
Chapter V. For a drift velocity of about 1 to 1.5 x 107 cm/s the elec-~

tric field is about 700 volts/cm. The power dissipated would be

where o is the conductivity and V is the volume of the solid. A typical

value for the conductivity ¢ would be lOZ(Q‘cm)_lc The volume of a typi-
- 3

cal thin sample would be about 10 3 em”. Putting these values into the

above equation gives a power of 5000 watts! Thicker samples will require




correspondingly greater amounts of power. Unless a very exotic heat
sink is developed, these power levels'will restrict operation to sﬁort
pulses at a low duty cycle. Not only is it important to keep the sample
under test from melting, but any significant temperature increase will
raise the thermal velocity and reduce any expected amplification. The
samples in the experiments that were performed in this laboratory usually
had impedances of one to fifty ohms. At the higher impedances, commer-
cial pulse generators are readily available and no particular problems
are encountered. At the lower impedances of a few ohms, a suitable com-
mercial unit could not»be found. The required currents and voltages
were obtained in pulses of 4 to 5 psec duration by using a lumped para-
meter delay line triggered by a very fast rise time silicon controlled

rectifier.?

The design and construction of this pulser, in addition to
the units available commercially, permitted the testing of a wide range

of materials and sample dimensions.

9.2. Sample Preparation

The theoretical work discussed in the previous chapters assumed
that samples of the required dimensions and surface uniformity could be
made in the laboratory. 1In this section, a few of the possible tech-

niques and their limitations will be discussed.

1 A. Silzars, C. H. Durney, and R. W. Grow, "Theoretical and Experi-
mental Investigation of Solid-State Mechanisms for Generating Co-
herent -Radiation in the Ultraviolet and X-Ray Regions," Technical
Report UTEC MD 67-033, Microwave Device and Physical Electronics
Laboratory, University of Utah, Salt Lake City, Utah, June 1967.
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The minimum thickness of a semiconductor sample that can be
made in the laboratory is usually determined by the mechanical strength
required to have a self-supporting structure. For application of con-
tacts and for propagation measurements, it is usually necessary to have
samples of at least a few millimeters in width and length. Samples of
this size can be cut with a wire saw using silicon carbide as an abra-
sive. The thickness can be as desired down to about .005 inches. These
samples can then be bonded to a glass plate with a thermoplastic resin
and mechanically polished to produce a more uniform surface and to
further decrease the thickness. In practice, it was found that the limit
of mechanical polishing is a sample about .001 inches in thickness. This
can be accomplished by using a semiconductor grade diamond paste for the
final polish. These pastes are available with a grain size as small as
1/2 to. 1 micron. A surface polished in this manner appears shiny under
a microscope with 30 x magnification. The grain size of the polishing
paste would indicate that the surface nonuniformity is on the order of
a micron with some damage to the crystal structure extending somewhat
deeéér into the sample.

Aﬁdther method of preparing the surfaces is to use a chemical
etch sdbséquént to a rough mechanical polish. Many such solutions are
available and have been tabulated in the literatﬁre, e.g., Biondi, Tran-

sistor Technology, Vol. III.? Both germanium and indium antimonide can

2 F. J. Biondi, Transistor Technology, Vol. III, D. Van Nostrand, Inc.,
Princeton, New Jersey, 1958, pp. 117-151.
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be polished using the well known CP4 etch. Usiﬁg this etch will alsc
reduce the thickness of the samples. The chemical etching method has
the advantage that surface strains and fractures are not introduced.
The disadvantage is that the etch does not act uniformly over large
areas. The sample, after etching, appears shiny but with some undula-
tions or waviness. This would make it difficult to get intimate con-
tact between two samples if a layered structure is desired. A micro-
scopic examination reveals that the etching process leaves a surface

1

that has small "craters' of about 5 microns in diameter covering the
entire extent of the sample. The chemical etch is very sensitive to
the precleaning process and it may be possible to get more uniform sur-
faces with special precautions during the cleaning operations.

Although thése results appear to be very good when compared to
the free-space wavelength, which is 1 mm at 300 GHz, we must remember that
the slow-wave space-charge interactions have wavelengths of ~10'-3 A
This means that the space-charge wavelength at 300 GHz is only about 1
micron. This is now of the same order as the surface nonuniformity,
and large losses will result for the surface wave at the boundafy. Un~-
less considerable improvement can be realized in the surface preparation,
successful experimental results cannot be expected.

Vacuum deposition offers yet another promising method for making
thin and uniform samples in the laboratory. The only drawback is that
the samples produced are usually of very low mobility. The layered

structure proposed in Chapter IV could be made experimentally from a

thick substrate with a very good surface on which a thin layer of low
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mobility material has been vacuum deposited.

In conclusion, it appears that if a space-charge interaction in
the 300 GHz or higher region is to be investigated, then a very careful
study should first be made of the optimum surface conditions that can be

achieved experimentally.

9.3. Ohmic Contacts

The high electric fields which are needed for the high drift
velocities require good electrical contacts. Low resistance ohmic con-
tacts can be made to n-type germanium by alloying antimony-doped gold
to the contact area and then using ordinary tin-lead solder or a gold
fillet. For very small contact areas the antimony-gold can be vacuum
deposited onto the germanium through a mask which shields the rest of
the sample. Alloying of the deposited material is done by heating in a
hydrogen atmosphere while observing the sample through a low-power micro-
scope. A characteristic color change occurs when the utechtic tempera-
ture is reached. Indium antimonide can be treated similarly or it may
also be used with a flux and indium solder to provide the contacts.

The contacts were tested in pulsed operation by plotting the
current vs. voltage curves. The resistances measured corresponded to
those calculated from the resistivities of the samples, indicating very
low resistance contacts. The current-voltage curves were approximately
linear so that the contacts were not rectifying. Some nonlinearity was
observed at high currents, but this could easily be explained by con-

sidering the heating of the samples due to these same large currents.
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A rise in temperature will naturally increase the carrier concentration
and thereby lower the resistance. .
The high voltages and currents that were applied also serxrved as

a test for any defects in the contact area. Cracks or poor solder joints

resulted in arcing and eventual destruction of the sample.

9.4, Detectors and Sources

The interéction inveétigated;in this papervis espggially inter-
estiné becégse itvis éuitable fof f?éqgencieshffgm‘SOO Qﬂzlio the far
infrared. .This”£s a fange where godd sources ana‘detectérs are pres-
ently lacking. Unfortunately, the lack of sources and detectors makes
experimentation difficult. At the microwave frequencies, wave guides
and klystrons are readily available up to about 100 GHz. Then doubler
crystals can be used to raise the frequency up to about 200 GHz. Crys-
tal detectors are available for frequencies up to about 250 GHz. Beyond
this the detection and source problem becomes very difficult. The wave-
length becomes so short that wave guides must be so small that they can
no longer be easily manufactured. At present, 150 to 200 GHz seems to
be the upper limit for practical microwave experiments. This frequency
is about a factor of two lower than would be desirable for experiments
on the proposed space-charge interactiong. In the infrared region, use-
ful devices could possibly be built down to free-space wavelengths of
about 10 microns. Because very short dc pulses are required, the detec-
tor in this wavelength region must have a response time of about 1 usec.

The only detectors which fulfill this criterion are the doped germanium
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detectors. Gold-doped germanium has a useful response from about 1 ﬁ
to 9 Q. Copper~doped germanium will respond up to about 25 u, but re-
quires liquid helium for cooling.

At present there appears to be no avaiiable method for investi-
gating the frequency range where the space—chafge interactions have the
best chance for success. If the theoretical results were more encour-
aging, then it might be worthwhile to try an experiment near the low-
frequency or high~frequency limits of the interaction. Unfortunately,
this is not the case. Further experimental work is not warranted at

this time.
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X. SUMMARY AND CONCLUSIONS

In the previous chapters, space-charge interactions in solid-
state plasmas have been considered from several different viewpoints.
Some'particular cases have beén analyzed and quantitéfive results have
been presented. It is now appropriate to summarize some of the more
important results and to draw some conclusions from this work.

The double-stream interaction with one stream stationary was
analyzed for a configuration where the two streams are in adjacent
materials. The analysis predicted high gain for this configuration
when temperature and particle collisions were not included, and only
oné dimension was considered. Properties of semiconductors indicated
that useful devices could be made for operation over a broad frequency
range. Frequencies from 1. x 109 Hz to 3 x lO13 Hz satisfy the neces-
sary conditions for gain in the idealized model. For this configura-
tién; the material with the drifting stream éould be taken of arbitrary
thickness. The thickness of the stationary stream material was then
adjusted to optimize the gain. Typical values of gain are about 10
percent perxr space-éharge wavelength. This value is comparable to a
similar analysis for electron beams. Sincé‘the space—charge wavelength
in 2 solid is about 10_3 of the free-space wavelength, this results in
very large values of gain per cm.

The idealized model was then reconciled with the physical world
by including finite temperatures and particle collisions. The tempera-

ture problem was investigated in detail and several methods were com-
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pared. The hydrodynamic model, Boitzmann transport eduatioﬁ, and veloc-
ity superposition techniques were all considered. The hydrodynamic model,
which assumes an averaged thermal velocity, was found to give values of
gain that are too optimistic., The distribution function approach, i.e.,
velocity superposition, was investigated in some detail because the physi-
cally expected distributioﬁ function of the Maxwell-Boltzmann type cannot
be integrated explicity. Other distribution functions were tried to find
a good approximate technique for evaluating the integral. The best re-
sults were obtained from straight-line approximations which resulted in

a triangular-shaped distribution function. This distribution gave re-
sults to within * 20 percent of the Maxwell-Boltzmann distribution func-
tion as numerically integrated on a digital computer. The trial of other
distributions led to the conclusion that both the width -and the slope’of
the distribution function chosen are very important. It is felt that

the use of a triangular-shaped distribution provides a very good approxi-
mate technique for investigating temperature effects.

The numerical analysis of a germanium sample using physically
attainable velocities and plasma frequencies showed a sharp drop in the
gain as temperature was increased, even for very low temperatures. Use-
ful gain is possible only up to about 30° to 35°K. This means that
liquid nitrogen temperatures will not be sufficient for a laboratory ex—
periﬁentc

A simple collision theory, assuming a single collision frequency,
was then included to get some indication of the lower frequency limit for

useful gain. The computer results show that, for typical values of gain
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coefficients, the operating frequency must be above the collision fre-
quency to avoid severe collision damping. Collision frequencies in
semiconductors are in the 200 to 300 GHz range at 77°K. This will limit
operation to the submillimeter or shorter wavelengths, unless strong dc
magnetic fields are applied. If the collisionless gain is already low,
then operation will have to be at even higher frequencies.

The overall effect of temperature and particle collisions is to
impose severe restrictions on the operating conditions for the proposed
device. The sample must be cooled to very low temperatures and the op-
erating frequency must be in the submillimeter region.

Transverse ac velocities add another serious restriction to the
construction of a practical device. 1In electron beams, transverse
velocities are usually not considered because magnetic fields are used
to contain the beam. A solid, presumably, has well-defined boundaries
so that a magnetic field is not needed to keep the electrons in the
sample; however, inside the sample the electrons may move in all direc-
tions. . Computer calculations showed that an anisotropic:conductivity
is necessary for useful gain to result from the double-stream inter-
action. Furthermore, these calculations showed that the anisotropy
must be large. For the layered configuration, a ratio of longitudinal
to transverse conductivity as large as 103 begins to reduce the gain
as obtained from the one-~dimensional analysis. Longitudinal-to-trans-
verse conductivity ratios of less than 10 are too low for useful gain.
A magnetic field can be used to produce an anisotropy artificially, but

the fields required are too large at the frequencies of interest.




In addition to the theoretically predicted obstacles, there
are some problems of a more practical nature. Even if the interaction
works as intended, there is still the problem of how to get enough of
the energy out of the sample to realize a useful device. The mismatch
between the space-charge wavelength and the free-space wavelength is so
great that only a small fraction of the total dc energy can'be converted
to useful output. Typical power levels that can be expected from narrow
slots, that act like dipole antennas, are in the microwatt range.

Presently available semiconductors will satisfy the theoretical

requirements for plasma frequency, drift velocity, etc. However, the
space-charge wavelength is so short, about 1 micron for an operating
frequency of 300 GHz, that very uniform and undamaged surfaces are nec-
essary at the boundary between the two layers.

* Based on this study, we conclude that space-charge interactions
in solids without an applied dc magnetic field hold little promise for
development into useful devices for the following reasons:

1. Idealized one-dimensional space-charge models which neglect
temperature and collision effects always give results that
are far too optimistic. |

2.  The randomizing effect of finite temperature on the particle
velocities causes severe damping of the interaction gain.
Any practical device configuration will probably require
operation at temperatures below 77°K. The layered double-
stream structure investigated in this report must be oper-

ated at 35°K or below for useful gain to result,
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3. Particle collisions further add to the damping of the ideal-
ized gain. Operation must be above 300 GHz if severe colli-
sion damping is to be avoided. A strong dc magnetic field
may be used to reduce the effects of collisions for operation
at lower frequencies.

4. Transverse ac velocities must be included in any analysis.
Their effect is to eliminate .useful gain unless a sizable
conductivity anisotropy can be realized. Dc magnetic fields
for producing this anisotropy become impractically lsrge for
submillimeter or shorter wavelengths.

5. The space~charge wavelength is so small at the submilli-
meter or shorter wavelengths that there is presently nc
available technology for producing efficient coupling struc-
tures or semiconductors with the required surface uniformity.

The research described in this report has resulted in better

understanding of the potential of space-charge interactions in sclids.
The more detailed consideration of the problem has shown that simple
models are not adequate for making proposals for interaction mechanisms.
In particular, it is now reascnable to conclude that the possibility of
ultraviolet or X-ray devices based on space-charge interactions is not
very promising. Even if the basic difficulties of temperature, colli-
gions, etc., can be overcome, a major problem at X-rays would be the
coupling of enexgy from the material. The space-charge wavelength is

so short that coupling structures would have to approach the dimension

of the atomic spacing in the material.
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Thus the analysis of interactions of drifting charges in solids
based on the plasma model indicates that these interactions, particularly
double-stream interactions, will probably not be useful at X-ray fre-
quencies. Because of the complexity of the problem, however, we feel
that a quantum»mechanical analysis involving electron waves should be
made to explore adequately the possibility of interaction of drifting

charges in sclids at X-ray frequencies.
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