3,355 research outputs found

    A dimension-breaking phenomenon for water waves with weak surface tension

    Full text link
    It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schr\"odinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-015-0941-

    Arkansas Cotton Variety Test 2003

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way, the annual test facilitates the inclusion of new, improved genetic material in Arkansas cotton production

    Arkansas Cotton Variety Test 2002

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant. In this way, the annual test facilitates the inclusion of new, improved genetic material into Arkansas cotton production. Variety adaptation is determined by evaluation of the varieties and lines at four University of Arkansas research stations located near Keiser, Clarkedale, Marianna, and Rohwer. Tests are duplicated in irrigated and non-irrigated culture at the Keiser and Marianna locations. In 2002, 37 entries were evaluated in the main test and 25 were evaluated in the first-year test. This report also includes the Mississippi County Cotton Variety Test (a large-plot, on-farm evaluation of 12 Round-up Ready varieties) and 12 other on-farm cotton variety tests conducted by the University of Arkansas Cooperative Extension Service

    Automated mining of the ALMA archive in the COSMOS field (A3COSMOS): II. Cold molecular gas evolution out to Redshift 6

    Get PDF
    We present new measurements of the cosmic cold molecular gas evolution out to redshift 6 based on systematic mining of the ALMA public archive in the COSMOS deep field (A3COSMOS). Our A3COSMOS dataset contains ~700 galaxies (0.3 < z < 6) with high-confidence ALMA detections in the (sub-)millimeter continuum and multi-wavelength spectral energy distributions (SEDs). Multiple gas mass calibration methods are compared and biases in band conversions (from observed ALMA wavelength to rest-frame Rayleigh-Jeans(RJ)-tail continuum) have been tested. Combining our A3COSMOS sample with ~1,000 CO-observed galaxies at 0 < z < 4 (75% at z < 0.1), we parameterize galaxies' molecular gas depletion time and molecular gas to stellar mass ratio (gas fraction) each as a function of the stellar mass, offset from the star-forming main sequence (Delta MS) and cosmic age (or redshift). Our proposed functional form provides a statistically better fit to current data (than functional forms in the literature), and implies a "downsizing" effect (i.e., more-massive galaxies evolve earlier than less-massive ones) and "mass-quenching" (gas consumption slows down with cosmic time for massive galaxies but speeds up for low-mass ones). Adopting galaxy stellar mass functions and applying our function for gas mass calculation, we for the first time infer the cosmic cold molecular gas density evolution out to redshift 6 and find agreement with CO blind surveys as well as semi-analytic modeling. These together provide a coherent picture of cold molecular gas, SFR and stellar mass evolution in galaxies across cosmic time

    A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants

    Get PDF
    Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery

    Azimuthal variations of gas-phase oxygen abundance in NGC 2997

    Get PDF
    13 pages, 17 figures, accepted to A&A Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The azimuthal variation of the HII region oxygen abundance in spiral galaxies is a key observable for understanding how quickly oxygen produced by massive stars can be dispersed within the surrounding interstellar medium. Observational constraints on the prevalence and magnitude of such azimuthal variations remain rare in the literature. Here, we report the discovery of pronounced azimuthal variations of HII region oxygen abundance in NGC 2997, a spiral galaxy at approximately 11.3 Mpc. Using 3D spectroscopic data from the TYPHOON Program, we study the HII region oxygen abundance at a physical resolution of 125 pc. Individual HII regions or complexes are identified in the 3D optical data and their strong emission line fluxes measured to constrain their oxygen abundances. We find 0.06 dex azimuthal variations in the oxygen abundance on top of a radial abundance gradient that is comparable to those seen in other star-forming disks. At a given radial distance, the oxygen abundances are highest in the spiral arms and lower in the inter-arm regions, similar to what has been reported in NGC 1365 using similar observations. We discuss whether the azimuthal variations could be recovered when the galaxy is observed at worse physical resolutions and lower signal-to-noise ratios.Peer reviewe

    Are the Narrow Line Regions in Active Galaxies Dusty and Radiation Pressure Dominated?

    Get PDF
    The remarkable similarity between emission spectra of narrow line regions (NLR) in Seyfert Galaxies has long presented a mystery. In photoionization models, this similarity implies that the ionization parameter is nearly always the same, about U ~ 0.01. Here we present dusty, radiation-pressure dominated photoionization models that can provide natural physical insight into this problem. In these models, dust and the radiation pressure acting on it provide the controlling factor in moderating the density, excitation and surface brightness of photoionized NLR structures. Additionally, photoelectric heating by the dust is important in determining the temperature structure of the models. These models can also explain the coexistence of the low-, intermediate- and coronal ionization zones within a single self-consistent physical structure. The radiation pressure acting on dust may also be capable of driving the fast (~3000 km/s) outflows such as are seen in the HST observations of NGC 1068.Comment: 23 pages, 8 figures, Accepted by Ap

    A Detailed Study of the Radio--FIR Correlation in NGC6946 with Herschel-PACS/SPIRE from KINGFISH

    Get PDF
    We derive the distribution of the synchrotron spectral index across NGC6946 and investigate the correlation between the radio continuum (synchrotron) and far-infrared (FIR) emission using the KINGFISH Herschel PACS and SPIRE data. The radio--FIR correlation is studied as a function of star formation rate, magnetic field strength, radiation field strength, and the total gas surface brightness. The synchrotron emission follows both star-forming regions and the so-called magnetic arms present in the inter-arm regions. The synchrotron spectral index is steepest along the magnetic arms (αn1\alpha_n \sim 1), while it is flat in places of giant H{\sc ii} regions and in the center of the galaxy (αn0.60.7\alpha_n \sim 0.6-0.7). The map of αn\alpha_n provides an observational evidence for aging and energy loss of cosmic ray electrons propagating in the disk of the galaxy. Variations in the synchrotron--FIR correlation across the galaxy are shown to be a function of both star formation and magnetic fields. We find that the synchrotron emission correlates better with cold rather than with warm dust emission, when the interstellar radiation field is the main heating source of dust. The synchrotron--FIR correlation suggests a coupling between the magnetic field and the gas density. NGC6946 shows a power-law behavior between the total (turbulent) magnetic field strength B and the star formation rate surface density ΣSFR\Sigma_{\rm SFR} with an index of 0.14\,(0.16)±\pm0.01. This indicates an efficient production of the turbulent magnetic field with the increasing gas turbulence expected in actively star forming regions. The scale-by-scale analysis of the synchrotron--FIR correlation indicates that the ISM affects the propagation of old/diffused cosmic ray electrons, resulting in a diffusion coefficient of D0=4.6×1028D_0=4.6\times 10^{28}\,cm2^2\,s1^{-1} for 2.2\,GeV CREs.Comment: 23 pages, 13 figures, accepted for publication in Astronomy & Astrophysics Journa

    A far-IR view of the starburst driven superwind in NGC 2146

    Get PDF
    NGC 2146, a nearby luminous infrared galaxy (LIRG), presents evidence for outflows along the disk minor axis in all gas phases (ionized, neutral atomic and molecular). We present an analysis of the multi-phase starburst driven superwind in the central 5 kpc as traced in spatially resolved spectral line observations, using far-IR Herschel PACS spectroscopy, to probe the effects on the atomic and ionized gas, and optical integral field spectroscopy to examine the ionized gas through diagnostic line ratios. We observe an increased ~250 km/s velocity dispersion in the [OI] 63 micron, [OIII] 88 micron, [NII] 122 micron and [CII] 158 micron fine-structure lines that is spatially coincident with high excitation gas above and below the disk. We model this with a slow ~200 km/s shock and trace the superwind to the edge of our field of view 2.5 kpc above the disk. We present new SOFIA 37 micron observations to explore the warm dust distribution, and detect no clear dust entrainment in the outflow. The stellar kinematics appear decoupled from the regular disk rotation seen in all gas phases, consistent with a recent merger event disrupting the system. We consider the role of the superwind in the evolution of NGC 2146 and speculate on the evolutionary future of the system. Our observations of NGC 2146 in the far-IR allow an unobscured view of the wind, crucial for tracing the superwind to the launching region at the disk center, and provide a local analog for future ALMA observations of outflows in high redshift systems.Comment: 16 pages, 13 figures, accepted for publication in Ap
    corecore