3,203 research outputs found

    Quantum computers can search rapidly by using almost any transformation

    Get PDF
    A quantum computer has a clear advantage over a classical computer for exhaustive search. The quantum mechanical algorithm for exhaustive search was originally derived by using subtle properties of a particular quantum mechanical operation called the Walsh-Hadamard (W-H) transform. This paper shows that this algorithm can be implemented by replacing the W-H transform by almost any quantum mechanical operation. This leads to several new applications where it improves the number of steps by a square-root. It also broadens the scope for implementation since it demonstrates quantum mechanical algorithms that can readily adapt to available technology.Comment: This paper is an adapted version of quant-ph/9711043. It has been modified to make it more readable for physicists. 9 pages, postscrip

    Quantum computers can search arbitrarily large databases by a single query

    Full text link
    This paper shows that a quantum mechanical algorithm that can query information relating to multiple items of the database, can search a database in a single query (a query is defined as any question to the database to which the database has to return a (YES/NO) answer). A classical algorithm will be limited to the information theoretic bound of at least O(log N) queries (which it would achieve by using a binary search).Comment: Several enhancements to the original pape

    New Samarium and Neodymium based admixed ferromagnets with near zero net magnetization and tunable exchange bias field

    Full text link
    Rare earth based intermetallics, SmScGe and NdScGe, are shown to exhibit near zero net magnetization with substitutions of 6 to 9 atomic percent of Nd and 25 atomic percent of Gd, respectively. The notion of magnetic compensation in them is also elucidated by the crossover of zero magnetization axis at low magnetic fields (less than 103 Oe) and field-induced reversal in the orientation of the magnetic moments of the dissimilar rare earth ions at higher magnetic fields. These magnetically ordered materials with no net magnetization and appreciable conduction electron polarization display an attribute of an exchange bias field, which can be tuned. The attractively high magnetic ordering temperatures of about 270 K, underscore the importance of these materials for potential applications in spintronics.Comment: 6 page text + 5 figure

    Energy and Efficiency of Adiabatic Quantum Search Algorithms

    Full text link
    We present the results of a detailed analysis of a general, unstructured adiabatic quantum search of a data base of NN items. In particular we examine the effects on the computation time of adding energy to the system. We find that by increasing the lowest eigenvalue of the time dependent Hamiltonian {\it temporarily} to a maximum of N\propto \sqrt{N}, it is possible to do the calculation in constant time. This leads us to derive the general theorem which provides the adiabatic analogue of the N\sqrt{N} bound of conventional quantum searches. The result suggests that the action associated with the oracle term in the time dependent Hamiltonian is a direct measure of the resources required by the adiabatic quantum search.Comment: 6 pages, Revtex, 1 figure. Theorem modified, references and comments added, sections introduced, typos corrected. Version to appear in J. Phys.

    Nested quantum search and NP-complete problems

    Full text link
    A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure

    Hilbert Space Average Method and adiabatic quantum search

    Full text link
    We discuss some aspects related to the so-called Hilbert space Average Method, as an alternative to describe the dynamics of open quantum systems. First we present a derivation of the method which does not make use of the algebra satisfied by the operators involved in the dynamics, and extend the method to systems subject to a Hamiltonian that changes with time. Next we examine the performance of the adiabatic quantum search algorithm with a particular model for the environment. We relate our results to the criteria discussed in the literature for the validity of the above-mentioned method for similar environments.Comment: 6 pages, 1 figur

    Self-magnetic compensation and Exchange Bias in ferromagnetic Samarium systems

    Full text link
    For Sm(3+) ions in a vast majority of metallic systems, the following interesting scenario has been conjured up for long, namely, a magnetic lattice of tiny self (spin-orbital) compensated 4f-moments exchange coupled (and phase reversed) to the polarization in the conduction band. We report here the identification of a self-compensation behavior in a variety of ferromagnetic Sm intermetallics via the fingerprint of a shift in the magnetic hysteresis (M-H) loop from the origin. Such an attribute, designated as exchange bias in the context of ferromagnetic/antiferromagnetic multilayers, accords these compounds a potential for niche applications in spintronics. We also present results on magnetic compensation behavior on small Gd doping (2.5 atomic percent) in one of the Sm ferromagnets (viz. SmCu(4)Pd). The doped system responds like a pseudo-ferrimagnet and it displays a characteristic left-shifted linear M-H plot for an antiferromagnet.Comment: 7 pages and 7 figure

    Equivalent qubit dynamics under classical and quantum noise

    Full text link
    We study the dynamics of quantum systems under classical and quantum noise, focusing on decoherence in qubit systems. Classical noise is described by a random process leading to a stochastic temporal evolution of a closed quantum system, whereas quantum noise originates from the coupling of the microscopic quantum system to its macroscopic environment. We derive deterministic master equations describing the average evolution of the quantum system under classical continuous-time Markovian noise and two sets of master equations under quantum noise. Strikingly, these three equations of motion are shown to be equivalent in the case of classical random telegraph noise and proper quantum environments. Hence fully quantum-mechanical models within the Born approximation can be mapped to a quantum system under classical noise. Furthermore, we apply the derived equations together with pulse optimization techniques to achieve high-fidelity one-qubit operations under random telegraph noise, and hence fight decoherence in these systems of great practical interest.Comment: 5 pages, 2 figures; converted to PRA format, added Fig. 2, corrected typo

    Thermo-magnetic history effects in the vortex state of YNi_2B_2C superconductor

    Get PDF
    The nature of five-quadrant magnetic isotherms for is different from that for in a single crystal of YNi2B2C, pointing towards an anisotropic behaviour of the flux line lattice (FLL). For, a well defined peak effect (PE) and second magnetization peak (SMP) can be observed and the loop is open prior to the PE. However, for, the loop is closed and one can observe only the PE. We have investigated the history dependence of magnetization hysteresis data for by recording minor hysteresis loops. The observed history dependence in across different anomalous regions are rationalized on the basis of su-perheating/supercooling of the vortex matter across the first-order-like phase transition and possible additional effects due to annealing of the disordered vortex bundles to the underlying equilibrium state.Comment: 4 pages, 4 figure

    A General Phase Matching Condition for Quantum Searching Algorithm

    Full text link
    A general consideration on the phase rotations in quantum searching algorithm is taken in this work. As four phase rotations on the initial state, the marked states, and the states orthogonal to them are taken account, we deduce a phase matching condition for a successful search. The optimal options for these phase are obtained consequently.Comment: 3 pages, 3 figure
    corecore