215 research outputs found

    In wild tobacco, Nicotiana attenuata, variation among bacterial communities of isogenic plants is mainly shaped by the local soil microbiota independently of the plants' capacity to produce jasmonic acid

    Get PDF
    The phytohormone jasmonic acid (JA) plays a central role in defense against necrotrophic pathogens and herbivores in Nicotiana attenuata. Recently Santhanam et al.(1) showed that JA does not have a major role in shaping the root- and shoot associated bacterial communities, though a few taxa differed among control (empty vector, EV) plants and plants impaired in their capacity to produce JA (irAOC). In this addendum, we provide additional data showing that the composition of the plant bacterial communities is mainly shaped by tissue type. The qualitative data analysis revealed that at the order level, 5 bacterial OTUs formed a core community found in all tissues irrespective of genotypes, while 9 OTUs were different among roots and shoots. The heterogeneity among individual plants was high masking the potential genotype effect on bacterial communities. Using a culture-dependent approach, 3 of 18 bacterial taxa retrieved either only from one of the genotypes or from both had a growth promoting effect on EV and irAOC seedlings. The data suggest that the local soil niche in which the roots grows is a major driver of the variability in root bacterial communities recruited by different individuals, and the plant growth-promoting effects of some taxa are independent of the genotype

    Toxicology of chemical mixtures: international perspective.

    Get PDF
    This paper reviews major activities outside the United States on human health issues related to chemical mixtures. In Europe an international study group on combination effects has been formed and has started by defining synergism and antagonism. Successful research programs in Europe include the development and application of statistically designed experiments combined with multivariate data analysis and modeling in vitro and in vivo studies on a wide variety of chemicals such as petroleum hydrocarbons, aldehydes, food contaminants, industrial solvents, and mycotoxins. Other major activities focus on the development of safety evaluation strategies for mixtures such as the use of toxic equivalence factors or alternatives such as the question-and-answer approach, fractionation followed by recombination of the mixture in combination with a mixture design, and quantitative structure-activity relationship analysis combined with lumping analysis and physiologically based pharmacokinetic/pharmacodynamic modeling for studying complex mixtures. A scheme for hazard identification and risk assessment of complex mixtures and a consistent way to generate total volatile organic compound values for indoor air have also been developed. Examples of other activities are carcinogenicity studies on complex mixtures (petroleum middle distillates, foundry fumes, pesticides, heterocyclic amines, diesel exhaust, solid particles), neurotoxicity studies of mixtures of solvents alone or in combination with exposure to physical factors, and toxicity studies of outdoor air pollutants, focusing on particulates. Outside the United States, toxicologists and regulators clearly have a growing interest in the toxicology and risk assessment of chemical mixtures

    Estimation of toxicity of chemical mixtures through modeling of chemical interactions.

    Get PDF
    The Agency for Toxic Substances and Disease Registry (ATSDR), in collaboration with the Dutch Organization for Applied Scientific Research (TNO) Nutrition and Food Research Institute, is conducting studies to evaluate the role of chemical interactions in the expression of toxicity from low-level exposure to combinations of chemicals. The goal of this collaborative effort is to use a weight-of-evidence (WOE) approach to estimate joint toxicity of some simple chemical mixtures and to compare the estimations with test results from animal toxicity studies. The WOE approach uses individual chemical dose-response assessments and algorithms that incorporate various assumptions regarding potential chemical interactions. Qualitative evaluations were prepared for binary combinations of chemicals for the effect of butyl hydroxyanisole on di(2-ethylhexyl)phthalate, the effect of stannous chloride on Cd chloride (CdCl2), and the effect of CdCl2 on loperamide. Analyses of these evaluations and their comparison with the conclusions of laboratory animal experiments indicate that the WOE approach can be used to estimate qualitatively the joint toxicity of such simple mixtures. To further test the utility of the WOE approach, qualitative and semiquantitative evaluations were prepared for two chemical mixtures--one with similarly acting halogenated aliphatics (trichloroethylene, tetrachloroethylene, hexachloro-1,3-butadiene[HCBD], and 1,1,2-trichloro-3,3,3-trifluoropropene [TCTFP]) and the other with dissimilarly acting nephrotoxic components (mercuric chloride, lysinolalanine, D-limonene, and HCBD). These two sets of data were used to estimate the overall toxicities of the mixtures using the WOE algorithm for the mixture. The comparison of the results of the estimated toxicity with experimentally determined toxicity of the mixture of similarly acting nephrotoxicants demonstrated that the WOE approach correctly adjusted for the observed interactions in experimental animal studies. However, this was not true for the mixture of dissimilarly acting nephrotoxicants. This could be attributed to the fact that WOE evaluations are based on dose additivity that postulates that all chemicals in a given mixture act in the same way--by the same mechanism--and differ only in their potencies. In these cases the WOE approach evaluations, based on consideration of common mechanisms for simple chemical mixtures, can lead to better estimates of joint toxicity of chemical mixtures than the default assumption of dose additivity. The results also show that the WOE evaluations should be target-organ specific because none of the models tested could approximate the observed responses in organs other than the target organs in the laboratory animal studies

    Ex vivo perfusion of the human placenta to investigate pregnancy pathologies

    Get PDF
    Pregnancy pathologies including gestational diabetes, intrauterine fetal growth restriction, and pre-eclampsia are common and significantly increase the risk of poor pregnancy outcomes. Research to better understand the pathophysiology and improve diagnosis and treatment is therefore crucial. The ex vivo placenta perfusion model offers a unique system to study pregnancy pathology without the risk of harm to mother or fetus. The presence of a maternal and fetal circulation and intact villus tree, facilitates investigations into maternal-fetal transfer, altered hemodynamics and vascular reactivity in the human placenta. It also provides a platform to test novel therapeutic agents. Here we review the key studies which have utilized the ex vivo placenta perfusion model to study different aspects of such pregnancy pathologies

    Grondig boeren met mais : eindrapportage project t/m 2016

    Get PDF

    Identification of altered miRNAs and their targets in placenta accreta

    Get PDF
    Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression

    Role of IL-36 Cytokines in the Regulation of Angiogenesis Potential of Trophoblast Cells

    Get PDF
    IL-36 cytokines (the agonists IL-36α, IL-36β, IL-36γ, and the antagonist IL-36Ra) are expressed in the mouse uterus and associated with maternal immune response during pregnancy. Here, we characterize the expression of IL-36 members in human primary trophoblast cells (PTC) and trophoblastic cell lines (HTR-8/SVneo and JEG-3) and upon treatment with bacterial and viral components. Effects of recombinant IL-36 on the migration capacity of trophoblastic cells, their ability to interact with endothelial cells and the induction of angiogenic factors and miRNAs (angiomiRNAs) were examined. Constitutive protein expression of IL-36 (α, β, and γ) and their receptor (IL-36R) was found in all cell types. In PTC, transcripts for all IL-36 subtypes were found, whereas in trophoblastic cell lines only for IL36G and IL36RN. A synthetic analog of double-stranded RNA (poly I:C) and lipopolysaccharide (LPS) induced the expression of IL-36 members in a cell-specific and time-dependent manner. In HTR-8/SVneo cells, IL-36 cytokines increased cell migration and their capacity to interact with endothelial cells. VEGFA and PGF mRNA and protein, as well as the angiomiRNAs miR-146a-3p and miR-141-5p were upregulated as IL-36 response in PTC and HTR-8/SVneo cells. In conclusion, IL-36 cytokines are modulated by microbial components and regulate trophoblast migration and interaction with endothelial cells. Therefore, a fundamental role of these cytokines in the placentation process and in response to infections may be expected
    corecore