7,116 research outputs found

    Model 1738 tape recorder/reproducer. general test requirements

    Get PDF
    Test requirements of tape recorder for Mariner progra

    Artifact of the phonon-induced localization by variational calculations in the spin-boson model

    Full text link
    We present energy and free energy analyses on all variational schemes used in the spin-boson model at both T=0 and T0T\neq0. It is found that all the variational schemes have fail points, at where the variational schemes fail to provide a lower energy (or a lower free energy at T0T\neq0) than the displaced-oscillator ground state and therefore the variational ground state becomes unstable, which results in a transition from a variational ground state to a displaced oscillator ground state when the fail point is reached. Such transitions are always misidentied as crossover from a delocalized to localized phases in variational calculations, leading to an artifact of phonon-induced localization. Physics origin of the fail points and explanations for different transition behaviors with different spectral functions are found by studying the fail points of the variational schemes in the single mode case.Comment: 9 pages, 7 figure

    A platform independent communication library for distributed computing

    Get PDF
    We present MPWide, a platform independent communication library for performing message passing between supercomputers. Our library couples several local MPI applications through a long distance network using, for example, optical links. The implementation is deliberately kept light-weight, platform independent and the library can be installed and used without administrative privileges. The only requirements are a C++ compiler and at least one open port to a wide area network on each site. In this paper we present the library, describe the user interface, present performance tests and apply MPWide in a large scale cosmological N-body simulation on a network of two computers, one in Amsterdam and the other in Tokyo

    Comment on "Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid"

    Get PDF
    In a recent preprint (arXiv:1401.1128v1) Cilibrizzi and co-workers report experiments and simulations showing the scattering of polaritons against a localised obstacle in a semiconductor microcavity. The authors observe in the linear excitation regime the formation of density and phase patterns reminiscent of those expected in the non-linear regime from the nucleation of dark solitons. Based on this observation, they conclude that previous theoretical and experimental reports on dark solitons in a polariton system should be revised. Here we comment why the results from Cilibrizzi et al. take place in a very different regime than previous investigations on dark soliton nucleation and do not reproduce all the signatures of its rich nonlinear phenomenology. First of all, Cilibrizzi et al. consider a particular type of radial excitation that strongly determines the observed patterns, while in previous reports the excitation has a plane-wave profile. Most importantly, the nonlinear relation between phase jump, soliton width and fluid velocity, and the existence of a critical velocity with the time-dependent formation of vortex-antivortex pairs are absent in the linear regime. In previous reports about dark soliton and half-dark soliton nucleation in a polariton fluid, the distinctive dark soliton physics is supported both by theory (analytical and numerical) and experiments (both continuous wave and pulsed excitation).Comment: 4 pages, 2 figure

    Calculations of the Local Density of States for some Simple Systems

    Full text link
    A recently proposed convolution technique for the calculation of local density of states is described more thouroughly and new results of its application are presented. For separable systems the exposed method allows to construct the ldos for a higher dimensionality out of lower dimensional parts. Some practical and theoretical aspects of this approach are also discussed.Comment: 5 pages, 3 figure

    Why future nitrogen research needs the social sciences

    Get PDF
    Nitrogen management is on the cusp of becoming a major global policy issue — the international community is gradually acknowledging that the feasibility of an array of environmental, health and food security goals hinges on how humanity manages nitrogen as a resource and a pollutant over the coming decades. As a result, the nitrogen research agenda should expand to consider more policy-relevant questions, such as the power dynamics of the broader food system and the many influences on farmer decision-making. Doing so demands much closer collaboration between the natural and social sciences, from problem formulation to research execution, which requires overcoming a range of ideological, institutional and knowledge barriers

    Recursion and Path-Integral Approaches to the Analytic Study of the Electronic Properties of C60C_{60}

    Full text link
    The recursion and path-integral methods are applied to analytically study the electronic structure of a neutral C60C_{60} molecule. We employ a tight-binding Hamiltonian which considers both the ss and pp valence electrons of carbon. From the recursion method, we obtain closed-form {\it analytic} expressions for the π\pi and σ\sigma eigenvalues and eigenfunctions, including the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states, and the Green's functions. We also present the local densities of states around several ring clusters, which can be probed experimentally by using, for instance, a scanning tunneling microscope. {}From a path-integral method, identical results for the energy spectrum are also derived. In addition, the local density of states on one carbon atom is obtained; from this we can derive the degree of degeneracy of the energy levels.Comment: 19 pages, RevTex, 6 figures upon reques
    corecore