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Abstract

We present MPWide, a platform independent communication library for performing message passing between
supercomputers. Our library couples several local MPI applications through a long distance network using, for exam-
ple, optical links. The implementation is deliberately kept light-weight, platform independent and the library can be
installed and used without administrative privileges. The only requirements are a C++ compiler and at least one open
port to a wide area network on each site. In this paper we present the library, describe the user interface, present per-
formance tests and apply MPWide in a large scale cosmological N-body simulation on a network of two computers,
one in Amsterdam and the other in Tokyo.

1. Introduction

A parallel application can run concurrently on multiple supercomputers provided one is able to coordinate the
tasks between them and limit the performance overhead of the wide area communications. The advantage of using
a distributed infrastructure lies in the enormous amounts of storage, RAM and computing performance it makes
available. Distributed computing therefore allows us to solve large scale scientific problems [1]. Starting from the
coupling of Intel Paragons over an ATM network [2] in the early 1990s, distributed parallel applications have become
very popular.

An efficient method to program a parallel application is the Message Passing Interface (MPI [3]), a language-
independent communication protocol that coordinates the computing tasks in parallel programs. MPI is often used
for intra-site parallelization, but it can also be used for message passing in a distributed infrastructure. Prior efforts
in the use of MPI on distributed infrastructures are abundant [4, 5]. With respect to N-body simulations Gualandris
et. al. [6] have demonstrated that it is possible to use grid-enabled clusters of PCs connected via regular internet, grid
middleware and MPICH-G2 [7]. However, the vast majority of MPI implementations requires all participating nodes
to have a public IP address, which is generally undesirable for supercomputer environments for security reasons.
Furthermore these implementations do not have built-in optimizations to fully exploit dedicated network circuits
between supercomputers.

The lack of flexibility in deployment and link-specific optimizations of grid-oriented MPI implementations in
distributed supercomputer environments led us to develop MPWide, a light-weight socket library specially aimed for
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high-performance wide-area message passing between supercomputers. In this paper we present several performance
results and apply MPWide to parallelize a large-scale cosmological N-body simulation across two supercomputers.

2. Related Work

Several grid message-passing libraries and frameworks have been developed with the intent to make distributed
computing possible between sites that have restrictive firewall policies. PACX-MPI [8] is specifically geared for par-
allelization across sites and does not require compute nodes to have a public IP adress. Instead, it forwards inter-site
communications through two forwarding demon processes on each site. Such a setup works reasonably well for appli-
cations that have been parallelized over multiple supercomputers using regular internet [9], but the two communication
process restriction is less optimal when using multiple sites in a dedicated network environment. The Interoperable
MPI (IMPI) [10] standard has also been designed to specifically facilitate execution across sites, but at the time of
writing very few of the vendor-tuned implementations on supercomputers support IMPI. Also, IMPI requires the
installation of a centralized and globally accessible server and does not support path-specific optimizations.

NetIbis [11] and PadicoTM [12] are two communication frameworks which are able to establich connections using
bootstrap links, thus not requiring public IP addresses. However, PadicoTM also requires the use of a centralized
rendez-vous node for bootstrapping, and thereby some means of centralized connectivity. Both Ibis [13] and NETIbis
are sufficiently flexible to use in a restricted supercomputer environment, but introduce a communication overhead
compared to regular socket communications. These libraries are therefore less suitable for high-performance message
passing over dedicated inter-supercomputer networks.

3. Architecture of MPWide

3.1. Design
MPWide is a light-weight communication library which connects multiple applications on different supercom-

puters, each of them running with the locally recommended MPI implementation. It can be installed by a local user
without administrative privileges, has a very limited set of software requirements, and the application programmer
interface is similar to that of MPI.

MPWide has been designed to facilitate message passing between supercomputers and construct/modify custom
communication topologies. The MPWide library is linked to the application at compile time and requires only the
presence of UNIX sockets and a C++ compiler. MPWide provides an abstraction layer on top of regular sockets with
methods to construct a communication topology, to adjust the parameters of individual communication paths and to
perform message passing and forwarding across the topology. MPWide does not link against local MPI implementa-
tions, but can be used to combine multiple programs parallelized with MPI. Maintaining separate implementations for
intra- and inter-site message passing makes it easier to specifically optimize and debug long-distance communication
paths while relying on well-tested and vendor-tuned software for optimal intra-site communication performance.

During the development of MPWide, we have chosen to support multiple streams with a TCP-based protocol. This
is a well-known and proven technique to improve network performance in the WAN [14], and provided the best wide
area communication performance in our preliminary tests. In MPWide, each TCP stream is represented as a channel.
A channel therefore provides a bidirectional connection between two ports on two hosts. On network paths where the
use of parallel TCP streams provides a performance benefit, it is possible to use multiple channels concurrently on
the same path. The message passing and forwarding functions in MPWide are designed to operate concurrently on
multiple channels when needed.

Channels are locally defined at initialization and may be closed, modified and reopened at any time during execu-
tion. This allows us to alter the communication topology at run-time, e.g. to restart or migrate part of the MPWide-
enabled application.

Once one or more communication channels have been established, the user can transfer data using the commu-
nication calls in the MPWide API. The user provides a listing of the channels used for each communication call by
supplying a list of channel indices to the MPWide communication functions. Two example function signatures are
shown in Fig. 1, and Table 1 provides an overview of the MPWide functionality. MPWide also supports several func-
tions to modify properties of individual channels, such as the tcp buffer sizes, transmission chunk sizes and software
packet pacing.
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void MPW_SendRecv(char* SendBuf, long long int SendSize, char* RecvBuf,
long long int RecvSize, int* Channels, int NumChannels);

void MPW_Cycle(char* SendBuf, long long int SendSize, char* RecvBuf,
long long int RecvSize, int* SendChannels, int NumSendChannels,
int* RecvChannels, int NumRecvChannels);

Figure 1: Full signatures of MPW Cycle and MPW SendRecv.

command name functionality
MPW Barrier() Synchronize between two ends of the network.
MPW Cycle() Send buffer over one set of channels, receive from other.
MPW DSendRecv() Send/receive buffers of unknown size using caching.
MPW Init() Set up channels and initialize MPWide.
MPW Finalize() Close channels and delete MPWide buffers.
MPW Recv() Receive a single buffer (merging the incoming data).
MPW Relay() Forward all traffic between two channels.
MPW Send() Send a single buffer (splitted evenly over the channels).
MPW SendRecv() Send/receive a single buffer.

Table 1: List of MPWide function calls. In addition to this list, each function has a variant call with a prefix ’P’ which operates on one send and/or
recv buffer per channel.

Since message passing can be performed over multiple channels in parallel, it is possible to communicate with mul-
tiple hosts simultaneously. For example, the user can scatter data across multiple processes with a single MPW Send()
call or gather data from multiple hosts with a single MPW Recv(). Each function has a variant call with a prefix ’P’
(e.g. MPW PSend()) which takes an array of buffer pointers instead of one buffer pointer. These functions use one
pointer for each channel, and the size of each seperate buffer can be explicitly specified. Consequently, MPW PSend()
or MPW PRecv() functions can be used to respectively scatter and gather data which is not equally distributed across
the hosts.

3.2. Implementation

We implemented MPWide using C++ in combination with GNU C sockets and POSIX threads [15]. MPWide
creates and destroys threads on the fly whenever a communication call is made. With modern kernels, the overhead of
creating and destroying threads is very small, and using MPWide we were able to reach nearly 10Gbps with message
passing tests over local networks. For longer network paths, the high latency results in an even smaller relative
overhead for thread creation/destruction. We have considered creating threads only at startup and managing them at
runtime, but these modifications would increase the code’s complexity and only offer a limited performance benefit,
as threading overhead plays a marginal role in wide area communication performance.

Aside from the ability to hardwire each communication, the library also supports a number of customizable pa-
rameters:

• number of concurrent streams for each communication call

• data feeding pace of sending and receiving.

• TCP window size for each individual socket

The maximum number of streams and the TCP window size may be restricted by local system policies. However,
we were able to use up to 128 streams on most systems without requiring administrative rights. The code has been
packaged and is publicly available at
http://castle.strw.leidenuniv.nl/software/mpwide.html.
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4. Benchmarking MPWide

We performed a series of tests on the Dutch ASCI Supercomputer 3 (DAS-3 1) to measure the performance of
MPWide between two sites, one at the University of Amsterdam and one at the Delft University of Technology. Both
sites are connected to regular internet with a 1 Gbps duplex interface. A detailed specification can be found in columns
2 and 3 of Table 2. We performed the tests using the system default TCP window sizes (16 kB send and 85 kB recv).

Each run consists of 100 two-way message exchanges, where we record the average throughput and the standard
error. First we performed 8 different runs using messages of 8 MB and respectively 1, 2, 4, 8, 16, 32, 64 and 128 TCP
streams in parallel. We then repeated the same series of runs with message sizes of 64 and 512 MB.

DAS-3 Ams DAS-3 Delft Huygens Cray
Architecture AMD Opteron AMD Opteron IBM Power6 Cray XT4
Number of nodes 41 68 104 740
Cores per node 4 2 32 4
CPU frequency [GHz] 2.2 2.4 4.7 2.2
Memory per core [GB] 1 2 4/8 2

Table 2: Specifications of the two DAS-3 sites used in the MPWide experiments, and the Huygens supercomputer in Amsterdam and the Cray XT4
supercomputer in Tokyo which are used for experiments in Section 5.

4.1. Results
The results of our tests on the DAS-3 are found in Fig. 2. Although the tests were performed over regular internet,

the fluctuations in our measurements are limited. When exchanging messages of 8 MB size, we obtain the best
performance using a single stream, as the use of additional streams results in a lower average performance as well as
an increased fluctuation in performance. This is caused by the fact that message passing performance over multiple
streams is limited by the slowest streams. For larger message sizes, however, using a single stream does not result
in an optimal performance. Instead, we find that the best results are obtained using 8 streams (for 64 MB) to 32
streams (for 512 MB). Although a high peak performance is obtained when using 64 or more streams, the sustained
performance is lower because the excess streams can cause network congestion.

5. Testing Performance in a Production Environment

We originally developed MPWide to manage the long-distance message passing in the CosmoGrid project [16].
CosmoGrid is a large-scale cosmological project which aims to perform a dark matter simulation of a cube with sides
of 30 Mpc using supercomputers on two continents. In this simulation, we use the cosmological Λ Cold Dark Matter
model [17] which defines a constant fraction of the overall energy density for dark energy to model the accelerating
expansion of the universe. We apply this model to simulate the dark matter particles with a parallel tree/particle-
mesh N-body integrator, GreeM [18]. This integrator can be run either as a single MPI application, or as multiple
MPI applications on different supercomputers. In the latter case, the wide area communications are performed using
MPWide. We use GreeM to calculate the dynamical evolution of 20483 (∼ 8.590 billion) particles over a period of
time from redshift z = 65.35 to z = 0. More information about the parameters used and the scientific rationale can be
found in [16].

Before the simulation is launched, the initial condition is decomposed in slices for each site, and in blocks within
that slice for each process. Each block contains an equal number of particles but may vary in volume. A simulation
process loads one block during startup, and calculates tree and particle mesh force interactions at every step. These
force calculations require the exchange of particles with neighbouring processes (and sites, see Fig.3) as well as the
exchange of mesh cells. In addition, a number of smaller communications are performed to balance the load across
all processes.

We have used GreeM together with MPWide in two different experiments. One experiments consists of a full-
length simulation of a limited scale (2563 particles), and one run consists of a limited part of the production simulation
described earlier.

1DAS-3: http://www.cs.vu.nl/das3/
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Figure 2: Measured throughput in Gbit per second as a function of the number of communications streams used between the DAS-3 site in
Amsterdam and the DAS-3 site in Delft. The throughput is given for runs with 1 to 128 threads and message sizes of resp. 8, 64 and 512 MB. This
test was performed over regular internet, and the theoretical bandwidth limit of the network interfaces is 2 Gbit per second.

Figure 3: Data decomposition overview of the CosmoGrid simulation when run on two supercomputers [16].

5.1. Test Experiment

We have performed two test runs, of which each one uses a different infrastructure. Both runs were performed
over two sites, with 30 calculation processes and one communication process per site. The run was performed using
the DAS-3 sites in Amsterdam and Delft, of which the specification can be found in Table 2.

5.1.1. Test Results
The performance results of our test simulation on the DAS-3 can be found in Fig. 4. Here we find that the sim-

ulation performance is dominated by calculation, with a communication overhead less than 20 percent of the overall
wallclock time throughout the run. As we used regular internet for the wide area communication, our simulation
performance is subject to the influence of background network traffic. The two performance dips which can be found
around step 1300 and 1350 are most likely caused by incidental increases in background traffic.
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Figure 4: Measured wall-clock time spent (in log-scale) on each simulation step for a 2563 particle test run on the DAS-3 between Amsterdam and
Delft. The full-length run was performed using 62 cores, with 30 cores residing on each supercomputer and 2 cores used for communication only.
The top dotted line indicates total time spent, the dashed line indicates time spent on calculation and the bottom solid line represents time spent on
communication with MPWide.

Figure 5: Network topology example of the CosmoGrid simulation when run on two supercomputers, one in Amsterdam, the Netherlands and
one in Tokyo, Japan. Data transfers within the local supercomputer are performed using MPI (thin arrows), whereas other communications are
performed using MPWide (thick arrows). The communication nodes (indicated by the gray boxes) reside outside of the MPI domains and contain
user-space port forwarders. Before the data is transferred to the communication node, it is gathered on a central process on the local supercomputer
(indicated by the green boxes).

5.2. Production

We have performed a large-scale calculation between supercomputers in Amsterdam and Tokyo to measure the
performance of the code when it is used for production. We have used the IBM Power6-based Huygens supercomputer
at SARA, Amsterdam, the Netherlands and the Cray XT4 supercomputer at the National Astronomical Observatory
of Japan in Tokyo, Japan. The technical specifications for both supercomputers can be found in Table 2.

To exchange data between the supercomputers in Amsterdam and Tokyo we reserved and used a 10 Gbps dedicated
light path in the GLIF network[19], which has a round trip time of 273 milliseconds. The run between Huygens and
the Tokyo Cray was performed using 64 concurrent TCP streams. A detailed overview of the communication topology
during the simulation is given in Fig.5. Each of the supercomputers was equipped with one specialized communication
node. These nodes are each connected to the local supercomputer network and are linked together by the 10 Gbps
light path. MPWide is used to transfer the locally gathered data to the communication node, forward it to the other
site using the light path, and finally to deliver the data to the remote MPI simulation.

The production-sized run was performed on 752 cores in total. The topology of this run was asymmetric, using
500 cores on Huygens and 250 cores on the Cray for calculation. The full run lasted just under 12 hours, during
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Figure 6: Measured wall-clock time (in log-scale) for each simulation step for a partial 20483 particle run. The run, which uses some adjusted TCP
settings, was performed using 750 cores, with 500 cores used on Huygens and 250 cores used on the Tokyo Cray. An explanation of the lines can be
found in the caption of Fig. 4. The time spent on MPWide communication also includes local communication overheads for mesh and interaction
tree exchanges.

which we performed 102 simulation steps. The performance results of this run can be found in Fig. 6. In this full-
scale run, the calculation time dominated the overall performance, and was slightly higher at startup and during steps
where snapshots were written. The communication performance is generally constant with three performance dips
throughout the run. These dips are caused by periods of packet loss on the light path.

Also, the communication time increases slightly after step 30 in the simulation. The increase is most likely caused
by a change in TCP buffering sizes by the local system, although we did not track this directly. Overall, the total
communication time per step was between 50 and 60 seconds for most of the simulation, and constituted about one
eighth of the total execution time.

6. Conclusions and Future Work

We present MPWide, a communication library to perform message passing between supercomputers. MPWide
provides message passing that is intrinsically parallelized, and can be used for performing high-performance com-
puting across multiple supercomputers. The library allows for customization of individual connections and has a
light-weight design, which makes it well-suited for connecting different supercomputer platforms. We have shown
performance results of MPWide between two sites and applied MPWide to combine two MPI applications into a very
large parallel simulation across a wide area compute infrastructure. During our tests, we were able to obtain com-
munication speeds in excess of 1Gbps between two DAS-3 sites. In addition, we were able to perform an N-body
simulation across two continents with 20483 particles. During this simulation, about one eighth of the execution time
was spent on communications.

Given that the parallel application is sufficiently scalable (which is the case for the N-body integrator used in this
work), MPWide can be used to efficiently parallelize production applications across multiple supercomputers.
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