2,681 research outputs found

    Yang-Lee zeroes for an urn model for the separation of sand

    Full text link
    We apply the Yang-Lee theory of phase transitions to an urn model of separation of sand. The effective partition function of this nonequilibrium system can be expressed as a polynomial of the size-dependent effective fugacity zz. Numerical calculations show that in the thermodynamic limit, the zeros of the effective partition function are located on the unit circle in the complex zz-plane. In the complex plane of the actual control parameter certain roots converge to the transition point of the model. Thus the Yang-Lee theory can be applied to a wider class of nonequilibrium systems than those considered previously.Comment: 4 pages, 3 eps figures include

    Extended phase diagram of the Lorenz model

    Get PDF
    The parameter dependence of the various attractive solutions of the three variable nonlinear Lorenz model equations for thermal convection in Rayleigh-B\'enard flow is studied. Its bifurcation structure has commonly been investigated as a function of r, the normalized Rayleigh number, at fixed Prandtl number \sigma. The present work extends the analysis to the entire (r,\sigma) parameter plane. An onion like periodic pattern is found which is due to the alternating stability of symmetric and non-symmetric periodic orbits. This periodic pattern is explained by considering non-trivial limits of large r and \sigma. In addition to the limit which was previously analyzed by Sparrow, we identify two more distinct asymptotic regimes in which either \sigma/r or \sigma^2/r is constant. In both limits the dynamics is approximately described by Airy functions whence the periodicity in parameter space can be calculated analytically. Furthermore, some observations about sequences of bifurcations and coexistence of attractors, periodic as well as chaotic, are reported.Comment: 36 pages, 20 figure

    Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros

    Get PDF
    We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose-systems in power law traps within a semi-analytic approach with a continuous one-particle density of states Ω(E)Ed1\Omega(E)\sim E^{d-1} for different values of dd and to a three dimensional harmonically confined ideal Bose-gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein condensation phase transition sensitively depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small systems see "http://www.smallsystems.de

    Modified semiclassical approximation for trapped Bose gases

    Full text link
    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The results of the modified approach are shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. Effective thermodynamic limit is defined for any confining dimension. The behaviour of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed.Comment: Revtex file, 13 page

    First Order Phase Transition in a Reaction-Diffusion Model With Open Boundary: The Yang-Lee Theory Approach

    Full text link
    A coagulation-decoagulation model is introduced on a chain of length L with open boundary. The model consists of one species of particles which diffuse, coagulate and decoagulate preferentially in the leftward direction. They are also injected and extracted from the left boundary with different rates. We will show that on a specific plane in the space of parameters, the steady state weights can be calculated exactly using a matrix product method. The model exhibits a first-order phase transition between a low-density and a high-density phase. The density profile of the particles in each phase is obtained both analytically and using the Monte Carlo Simulation. The two-point density-density correlation function in each phase has also been calculated. By applying the Yang-Lee theory we can predict the same phase diagram for the model. This model is further evidence for the applicability of the Yang-Lee theory in the non-equilibrium statistical mechanics context.Comment: 10 Pages, 3 Figures, To appear in Journal of Physics A: Mathematical and Genera

    Visualization of Coherent Destruction of Tunneling in an Optical Double Well System

    Full text link
    We report on a direct visualization of coherent destruction of tunneling (CDT) of light waves in a double well system which provides an optical analog of quantum CDT as originally proposed by Grossmann, Dittrich, Jung, and Hanggi [Phys. Rev. Lett. {\bf 67}, 516 (1991)]. The driven double well, realized by two periodically-curved waveguides in an Er:Yb-doped glass, is designed so that spatial light propagation exactly mimics the coherent space-time dynamics of matter waves in a driven double-well potential governed by the Schr\"{o}dinger equation. The fluorescence of Er ions is exploited to image the spatial evolution of light in the two wells, clearly demonstrating suppression of light tunneling for special ratios between frequency and amplitude of the driving field.Comment: final versio

    Variable Curvature Slab Molecular Dynamics as a Method to Determine Surface Stress

    Full text link
    A thin plate or slab, prepared so that opposite faces have different surface stresses, will bend as a result of the stress difference. We have developed a classical molecular dynamics (MD) formulation where (similar in spirit to constant-pressure MD) the curvature of the slab enters as an additional dynamical degree of freedom. The equations of motion of the atoms have been modified according to a variable metric, and an additional equation of motion for the curvature is introduced. We demonstrate the method to Au surfaces, both clean and covered with Pb adsorbates, using many-body glue potentials. Applications to stepped surfaces, deconstruction and other surface phenomena are under study.Comment: 16 pages, 8 figures, REVTeX, submitted to Physical Review

    Transitions and Probes in Turbulent Helium

    Get PDF
    Previous analysis of a Paris turbulence experiment \cite{zoc94,tab95} shows a transition at the Taylor Reynolds number \rel \approx 700. Here correlation function data is analyzed which gives further evidence for this transition. It is seen in both the power spectrum and in structure function measurements. Two possible explanations may be offered for this observed transition: that it is intrinsic to the turbulence flow in this closed box experiment or that it is an effect of a change in the flow around the anemometer. We particularly examine a pair of ``probe effects''. The first is a thermal boundary layer which does exist about the probe and does limit the probe response, particularly at high frequencies. Arguments based on simulations of the response and upon observations of dissipation suggests that this effect is only crucial beyond \rel\approx 2000. The second effect is produced by vortex shedding behind the probe. This has been seen to produce a large modification in some of the power spectra for large \rel. It might also complicate the interpretation of the experimental results. However, there seems to be a remaining range of data for \rel < 1300 uncomplicated by these effects, and which are thus suggestive of an intrinsic transition.Comment: uuencoded .ps files. submitted to PRE. 12 figures are sent upon request to jane wang ([email protected]

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.
    corecore