261 research outputs found

    A theoretical and empirical investigation of nutritional label use

    Get PDF
    Due in part to increasing diet-related health problems caused, among others, by obesity, nutritional labelling has been considered important, mainly because it can provide consumers with information that can be used to make informed and healthier food choices. Several studies have focused on the empirical perspective of nutritional label use. None of these studies, however, have focused on developing a theoretical economic model that would adequately describe nutritional label use based on a utility theoretic framework. We attempt to fill this void by developing a simple theoretical model of nutritional label use, incorporating the time a consumer spends reading labels as part of the food choice process. The demand equations of the model are then empirically tested. Results suggest the significant role of several variables that flow directly from the model which, to our knowledge, have not been used in any previous empirical work

    Removing Discrete Ambiguities in CP Asymmetry Measurements

    Get PDF
    We discuss methods to resolve the ambiguities in CP violating phase angles ϕ\phi that are left when a measurement of sin2ϕ\sin 2 \phi is made. We show what knowledge of hadronic quantities will be needed to fully resolve all such ambiguities.Comment: 23 pages, revtex, no figure

    Dynamics and stress in gravity driven granular flow

    Full text link
    We study, using simulations, the steady-state flow of dry sand driven by gravity in two-dimensions. An investigation of the microscopic grain dynamics reveals that grains remain separated but with a power-law distribution of distances and times between collisions. While there are large random grain velocities, many of these fluctuations are correlated across the system and local rearrangements are very slow. Stresses in the system are almost entirely transfered by collisions and the structure of the stress tensor comes almost entirely from a bias in the directions in which collisions occur.Comment: 4 pages, 3 eps figures, RevTe

    Neutrino masses in R-parity violating supersymmetric models

    Full text link
    We study neutrino masses and mixing in R-parity violating supersymmetric models with generic soft supersymmetry breaking terms. Neutrinos acquire masses from various sources: Tree level neutrino--neutralino mixing and loop effects proportional to bilinear and/or trilinear R-parity violating parameters. Each of these contributions is controlled by different parameters and have different suppression or enhancement factors which we identified. Within an Abelian horizontal symmetry framework these factors are related and specific predictions can be made. We found that the main contributions to the neutrino masses are from the tree level and the bilinear loops and that the observed neutrino data can be accommodated once mild fine-tuning is allowed.Comment: 18 pages; minor typos corrected. To be published in Physical Review

    On intermediate subfactors of Goodman-de la Harpe-Jones subfactors

    Full text link
    In this paper we present a conjecture on intermediate subfactors which is a generalization of Wall's conjecture from the theory of finite groups. Motivated by this conjecture, we determine all intermediate subfactors of Goodman-Harpe-Jones subfactors, and as a result we verify that Goodman-Harpe-Jones subfactors verify our conjecture. Our result also gives a negative answer to a question motivated by a conjecture of Aschbacher-Guralnick.Comment: To appear in Comm. Math. Phy

    Calculation of nuclear spin-dependent parity-nonconserving amplitude for (7s,F=4) --> (7s,F=5) transition in Fr

    Get PDF
    Many-body calculation of nuclear spin-dependent parity-nonconserving amplitude for (7s,F=4) --> (7s,F=5) transition between hyperfine sublevels of the ground state of 211^{211}Fr is carried out. The final result is <7s,F=5 ||d_PNC|| 7s,F=4> = -0.49 10^{-10} i kappa a.u., where kappa is the dimensionless coupling constant. This is approximately an order of magnitude larger than similar amplitude in Cs. The dominant contribution to kappa is associated with the anapole moment of the nucleus.Comment: 4 pages, submitted to Phys.Rev.

    Neutrino Interferometry In Curved Spacetime

    Get PDF
    Gravitational lensing introduces the possibility of multiple (macroscopic) paths from an astrophysical neutrino source to a detector. Such a multiplicity of paths can allow for quantum mechanical interference to take place that is qualitatively different to neutrino oscillations in flat space. After an illustrative example clarifying some under-appreciated subtleties of the phase calculation, we derive the form of the quantum mechanical phase for a neutrino mass eigenstate propagating non-radially through a Schwarzschild metric. We subsequently determine the form of the interference pattern seen at a detector. We show that the neutrino signal from a supernova could exhibit the interference effects we discuss were it lensed by an object in a suitable mass range. We finally conclude, however, that -- given current neutrino detector technology -- the probability of such lensing occurring for a (neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation -- accepted for publication in Phys.Rev.D. Extra author adde

    Avalanche Dynamics in Evolution, Growth, and Depinning Models

    Full text link
    The dynamics of complex systems in nature often occurs in terms of punctuations, or avalanches, rather than following a smooth, gradual path. A comprehensive theory of avalanche dynamics in models of growth, interface depinning, and evolution is presented. Specifically, we include the Bak-Sneppen evolution model, the Sneppen interface depinning model, the Zaitsev flux creep model, invasion percolation, and several other depinning models into a unified treatment encompassing a large class of far from equilibrium processes. The formation of fractal structures, the appearance of 1/f1/f noise, diffusion with anomalous Hurst exponents, Levy flights, and punctuated equilibria can all be related to the same underlying avalanche dynamics. This dynamics can be represented as a fractal in dd spatial plus one temporal dimension. We develop a scaling theory that relates many of the critical exponents in this broad category of extremal models, representing different universality classes, to two basic exponents characterizing the fractal attractor. The exact equations and the derived set of scaling relations are consistent with numerical simulations of the above mentioned models.Comment: 27 pages in revtex, no figures included. Figures or hard copy of the manuscript supplied on reques
    corecore