16 research outputs found

    A Note on the Join of Varieties of Monoids with LI

    Get PDF
    Version published in the proceedings of the MFCS 2021 conference.International audienceIn this note, we give a characterisation in terms of identities of the join of V\mathbf{V} with the variety of finite locally trivial semigroups LI\mathbf{LI} for several well-known varieties of finite monoids V\mathbf{V} by using classical algebraic-automata-theoretic techniques. To achieve this, we use the new notion of essentially-V\mathbf{V} stamps defined by Grosshans, McKenzie and Segoufin and show that it actually coincides with the join of V\mathbf{V} and LI\mathbf{LI} precisely when some natural condition on the variety of languages corresponding to V\mathbf{V} is verified.This work is a kind of rediscovery of the work of J. C. Costa around 20 years ago from a rather different angle, since Costa's work relies on the use of advanced developments in profinite topology, whereas what is presented here essentially uses an algebraic, language-based approach

    The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids

    Full text link
    Cotutelle avec l'École Normale Supérieure de Cachan, Université Paris-Saclay.Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et les programmes de branchement. Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants, indépendamment de toute mesure de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus pour des mesures telles que la taille des programmes de branchements déterministes et non déterministes ou des formules avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation abstraite de la méthode et utilisons ce cadre pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs mesures de complexité. Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n’avait jamais été appliquée. Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes issus de petites variétés de monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par Barrington et Thérien pour généraliser la reconnaissance par morphismes et ainsi obtenir une caractérisation en termes de semi-groupes finis de NC^1 et de ses sous-classes. Étant donné une variété V de monoïdes finis, on considère la classe P(V) de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V : lorsque l’on fait varier V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC^1, par exemple AC^0, ACC^0 et NC^1 quand V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons une nouvelle notion de docilité pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L’intérêt principal de cette notion est que quand une variété V de monoïdes finis est docile, nous avons que P(V) contient seulement des langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De nombreuses questions ouvertes à propos de la structure interne de NC^1 seraient réglées en montrant qu’une variété de monoïdes finis appropriée est docile, et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles. Plus précisément, nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA et J. D’une part, nous montrons que DA est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous permet de dériver une caractérisation algébrique exacte de la classe des langages réguliers dans P(DA). D’autre part, nous montrons que J n’est pas docile. Pour faire cela, nous présentons une astuce par laquelle des programmes sur monoïdes de J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme par des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers dans P(J), et nous exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous exhibons également une hiérarchie basée sur la longueur des programmes à l’intérieur de la classe des langages reconnus par programmes sur monoïdes de la variété, améliorant par là les résultats de Tesson et Thérien sur la propriété de longueur polynomiale pour les monoïdes de ces variétés.This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can be decided by Turing machines in polynomial time. We consider non-uniform computational models like programs over monoids and branching programs. Our first contribution is an abstract, measure-independent treatment of Nečiporuk’s method for proving lower bounds. This method still gives the best lower bounds known on measures such as the size of deterministic and non-deterministic branching programs or formulæ with arbitrary binary Boolean operators; we give an abstract formulation of the method and use this framework to prove limits on the best lower bounds obtainable using this method for several complexity measures. We thereby confirm previously known limitation results in this slightly more general framework and showcase new limitation results for complexity measures to which Nečiporuk’s method had never been applied. Our second contribution is a better understanding of the computational power of programs over monoids taken from small varieties of finite monoids. Programs over monoids were introduced in the late 1980s by Barrington and Thérien as a way to generalise recognition by morphisms so as to obtain a finite-semigroup-theoretic characterisation of NC^1 and its subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages recognised by a sequence of polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different subclasses of NC^1, for instance AC^0, ACC^0 and NC^1 when V respectively is the variety of all finite aperiodic, finite solvable and finite monoids. We introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of Péladeau. The main interest of this notion is that when a variety V of finite monoids is tame, we have that P(V) does only contain regular languages that are quasi morphism-recognised by monoids from V. Many open questions about the internal structure of NC^1 would be settled by showing that some appropriate variety of finite monoids is tame, and, in this thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two well-known small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-semigroup- theoretic arguments. This allows us to derive an exact algebraic characterisation of the class of regular languages in P(DA). On the other hand, we show that J is not tame. To do this, we present a trick by which programs over monoids from J can recognise much more regular languages than only those that are quasi morphism-recognised by monoids from J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages in P(J), and we lay out some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and Thérien’s results on the polynomial-length property for monoids from those varieties

    Nondeterminism and an abstract formulation of Ne\v{c}iporuk's lower bound method

    Get PDF
    A formulation of "Ne\v{c}iporuk's lower bound method" slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Ne\v{c}iporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn)O(n^{3/2}/\log n)

    The AC0\mathsf{AC}^0-Complexity Of Visibly Pushdown Languages

    Full text link
    We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC0\mathsf{AC}^0 and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in AC0\mathsf{AC}^0 for any intermediate VPL. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs either that its language is in AC0\mathsf{AC}^0, outputs some m2m\geq 2 such that MODm\mathsf{MOD}_m is constant-depth reducible to LL (implying that LL is not in AC0\mathsf{AC}^0), or outputs a finite disjoint union of intermediate VPLs that LL is constant-depth equivalent to. In the latter case one can moreover effectively compute k,lN>0k,l\in\mathbb{N}_{>0} with klk\not=l such that the concrete intermediate VPL L(Sεack1Sb1acl1Sb2)L(S\rightarrow\varepsilon\mid a c^{k-1} S b_1\mid ac^{l-1}Sb_2) is constant-depth reducible to the language LL. Due to their particular nature we conjecture that either all intermediate VPLs are in AC0\mathsf{AC}^0 or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in AC0\mathsf{AC}^0 -- hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in AC0\mathsf{AC}^0 (when restricted to well-matched words). For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Boja\'nczyk and Walukiewicz), and use Green's relations.Comment: 81 page

    The Power of Programs over Monoids in DA

    Get PDF
    The program-over-monoid model of computation originates with Barrington\u27s proof that it captures the complexity class NC^1. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA satisfies tameness and hence that the regular languages recognized by programs over monoids in DA are precisely those recognizable in the classical sense by morphisms from QDA. Third, we show by contrast that the well studied class of monoids called J is not tame and we exhibit a regular language, recognized by a program over a monoid from J, yet not recognizable classically by morphisms from the class QJ. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA

    Gaussian Post-selection for Continuous Variable Quantum Cryptography

    Get PDF
    We extend the security proof for continuous variable quantum key distribution protocols using post selection to account for arbitrary eavesdropping attacks by employing the concept of an equivalent protocol where the post-selection is implemented as a series of quantum operations including a virtual distillation. We introduce a particular `Gaussian' post selection and demonstrate that the security can be calculated using only experimentally accessible quantities. Finally we explicitly evaluate the performance for the case of a noisy Gaussian channel in the limit of unbounded key length and find improvements over all pre-existing continuous variable protocols in realistic regimes.Comment: 4+4 pages. arXiv admin note: substantial text overlap with arXiv:1106.082

    Tameness and the power of programs over monoids in DA

    Get PDF
    The program-over-monoid model of computation originates with Barrington's proof that the model captures the complexity class NC1\mathsf{NC^1}. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA\mathbf{DA} satisfies tameness and hence that the regular languages recognized by programs over monoids in DA\mathbf{DA} are precisely those recognizable in the classical sense by morphisms from QDA\mathbf{QDA}. Third, we show by contrast that the well studied class of monoids called J\mathbf{J} is not tame. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA\mathbf{DA}

    Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis

    No full text
    This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can be decided by Turing machines in polynomial time. We consider non-uniform computational models like programs over monoids and branching programs.Our first contribution is an abstract, measure-independent treatment of Nečiporuk's method for proving lower bounds. This method still gives the best lower bounds known on measures such as the size of deterministic and non-deterministic branching programs or formulae{} with arbitrary binary Boolean operators; we give an abstract formulation of the method and use this framework to prove limits on the best lower bounds obtainable using this method for several complexity measures. We thereby confirm previously known limitation results in this slightly more general framework and showcase new limitation results for complexity measures to which Nečiporuk's method had never been applied.Our second contribution is a better understanding of the computational power of programs over monoids taken from small varieties of finite monoids. Programs over monoids were introduced in the late 1980s by Barrington and Thérien as a way to generalise recognition by morphisms so as to obtain a finite-semigroup-theoretic characterisation of NC^1 and its subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages recognised by a sequence of polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different subclasses of NC^1, for instance AC^0, ACC^0 and NC^1 when V respectively is the variety of all finite aperiodic, finite solvable and finite monoids. We introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of Péladeau. The main interest of this notion is that when a variety V of finite monoids is tame, we have that P(V) does only contain regular languages that are quasi morphism-recognised by monoids from V. Many open questions about the internal structure of NC^1 would be settled by showing that some appropriate variety of finite monoids is tame, and, in this thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two well-known small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-semigroup-theoretic arguments. This allows us to derive an exact algebraic characterisation of the class of regular languages in P(DA). On the other hand, we show that J is not tame. To do this, we present a trick by which programs over monoids from J can recognise much more regular languages than only those that are quasi morphism-recognised by monoids from J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages in P(J), and we lay out some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and Thérien's results on the polynomial-length property for monoids from those varieties.Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et les programmes de branchement. Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants, indépendamment de toute mesure de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus pour des mesures telles que la taille des programmes de branchements déterministes et non déterministes ou des formules avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation abstraite de la méthode et utilisons ce cadre pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs mesures de complexité. Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n'avait jamais été appliquée. Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes issus de petites variétés de monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par Barrington et Thérien pour généraliser la reconnaissance par morphismes et ainsi obtenir une caractérisation en termes de semi-groupes finis de NC^1 et de ses sous-classes. Étant donné une variété V de monoïdes finis, on considère la classe P(V) de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V : lorsque l'on fait varier V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC^1, par exemple AC^0, ACC^0 et NC^1 quand V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons une nouvelle notion de docilité pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L'intérêt principal de cette notion est que quand une variété V de monoïdes finis est docile, nous avons que P(V) contient seulement des langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De nombreuses questions ouvertes à propos de la structure interne de NC^1 seraient réglées en montrant qu'une variété de monoïdes finis appropriée est docile, et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles. Plus précisément, nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA et J. D'une part, nous montrons que DA est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous permet de dériver une caractérisation algébrique exacte de la classe des langages réguliers dans P(DA). D'autre part, nous montrons que J n'est pas docile. Pour faire cela, nous présentons une astuce par laquelle des programmes sur monoïdes de J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme par des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers dans P(J), et nous exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous exhibons également une hiérarchie basée sur la longueur des programmes à l'intérieur de la classe des langages reconnus par programmes sur monoïdes de la variété, améliorant par là les résultats de Tesson et Thérien sur la propriété de longueur polynomiale pour les monoïdes de ces variétés

    Tameness and the power of programs over monoids in DA

    Get PDF
    International audienceThe program-over-monoid model of computation originates with Barrington's proof that the model captures the complexity class NC1\mathsf{NC^1}. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA\mathbf{DA} satisfies tameness and hence that the regular languages recognized by programs over monoids in DA\mathbf{DA} are precisely those recognizable in the classical sense by morphisms from QDA\mathbf{QDA}. Third, we show by contrast that the well studied class of monoids called J\mathbf{J} is not tame. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA\mathbf{DA}
    corecore