25,119 research outputs found
Leading Large N Modification of QCD_2 on a Cylinder by Dynamical Fermions
We consider 2-dimensional QCD on a cylinder, where space is a circle. We find
the ground state of the system in case of massless quarks in a expansion.
We find that coupling to fermions nontrivially modifies the large saddle
point of the gauge theory due to the phenomenon of `decompactification' of
eigenvalues of the gauge field. We calculate the vacuum energy and the vacuum
expectation value of the Wilson loop operator both of which show a nontrivial
dependence on the number of quarks flavours at the leading order in .Comment: 24 pages, TIFR-TH-94/3
Emergent bipartiteness in a society of knights and knaves
We propose a simple model of a social network based on so-called
knights-and-knaves puzzles. The model describes the formation of networks
between two classes of agents where links are formed by agents introducing
their neighbours to others of their own class. We show that if the proportion
of knights and knaves is within a certain range, the network self-organizes to
a perfectly bipartite state. However, if the excess of one of the two classes
is greater than a threshold value, bipartiteness is not observed. We offer a
detailed theoretical analysis for the behaviour of the model, investigate its
behaviou r in the thermodynamic limit, and argue that it provides a simple
example of a topology-driven model whose behaviour is strongly reminiscent of a
first-order phase transitions far from equilibrium.Comment: 12 pages, 5 figure
Two-pion exchange potential and the amplitude
We discuss the two-pion exchange potential which emerges from a box diagram
with one nucleon (the spectator) restricted to its mass shell, and the other
nucleon line replaced by a subtracted, covariant scattering amplitude
which includes , Roper, and isobars, as well as contact terms
and off-shell (non-pole) dressed nucleon terms. The amplitude satisfies
chiral symmetry constraints and fits data below 700 MeV pion
energy. We find that this TPE potential can be well approximated by the
exchange of an effective sigma and delta meson, with parameters close to the
ones used in one-boson-exchange models that fit data below the pion
production threshold.Comment: 9 pages (RevTex) and 7 postscript figures, in one uuencoded gzipped
tar fil
Transport and Noise Characteristics of Submicron High-Temperature Superconductor Grain-Boundary Junctions
We have investigated the transport and noise properties of submicron YBCO
bicrystal grain-boundary junctions prepared using electron beam lithography.
The junctions show an increased conductance for low voltages reminiscent of
Josephson junctions having a barrier with high transmissivity. The voltage
noise spectra are dominated by a few Lorentzian components. At low temperatures
clear two-level random telegraph switching (RTS) signals are observable in the
voltage vs time traces. We have investigated the temperature and voltage
dependence of individual fluctuators both from statistical analysis of voltage
vs time traces and from fits to noise spectra. A transition from tunneling to
thermally activated behavior of individual fluctuators was clearly observed.
The experimental results support the model of charge carrier traps in the
barrier region.Comment: 4 pages, 4 figures, to be published in Appl. Phys. Let
Comparison of Josephson vortex flow transistors with different gate line configurations
We performed numerical simulations and experiments on Josephson vortex flow
transistors based on parallel arrays of YBa2Cu3O(7-x) grain boundary junctions
with a cross gate-line allowing to operate the same devices in two different
modes named Josephson fluxon transistor (JFT) and Josephson fluxon-antifluxon
transistor (JFAT). The simulations yield a general expression for the current
gain vs. number of junctions and normalized loop inductance and predict higher
current gain for the JFAT. The experiments are in good agreement with
simulations and show improved coupling between gate line and junctions for the
JFAT as compared to the JFT.Comment: 3 pages, 6 figures, accept. for publication in Appl. Phys. Let
Andreev Bound States in High Temperature Superconductors
Andreev bound states (ABS) at the surface of superconductors are expected for
any pair potential showing a sign change in different k-directions with their
spectral weight depending on the relative orientation of the surface and the
pair potential. We report on the observation of ABS in HTS employing tunneling
spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The
tunneling spectra were studied as a function of temperature and applied
magnetic field. The tunneling spectra of GBJ formed by YBCO, BSCCO, and LSCO
show a pronounced zero bias conductance peak that can be interpreted in terms
of Andreev bound states at zero energy that are expected at the surface of HTS
having a d-wave symmetry of the order parameter. In contrast, for the most
likely s-wave HTS NCCO no zero bias conductance peak was observed. Applying a
magnetic field results in a shift of spectral weight from zero to finite
energy. This shift is found to depend nonlinearly on the applied magnetic
field. Further consequences of the Andreev bound states are discussed and
experimental evidence for anomalous Meissner currents is presented.Comment: 17 pages, 10 figures, to appear in Eur. Phys. J.
Quark-Antiquark Bound States in the Relativistic Spectator Formalism
The quark-antiquark bound states are discussed using the relativistic
spectator (Gross) equations. A relativistic covariant framework for analyzing
confined bound states is developed. The relativistic linear potential developed
in an earlier work is proven to give vanishing meson decay
amplitudes, as required by confinement. The regularization of the singularities
in the linear potential that are associated with nonzero energy transfers (i.e.
) is improved. Quark mass functions that build chiral
symmetry into the theory and explain the connection between the current quark
and constituent quark masses are introduced. The formalism is applied to the
description of pions and kaons with reasonable results.Comment: 31 pages, 16 figure
The quark mass dependence of the pion mass at infinite N
In planar QCD, in two space time dimensions, the meson eigenvalue equation
has a nonlocal structure interpretable as resulting from hidden degrees of
freedom. The nonlocality can be reconstructed from the functional form of the
pion mass dependence on quark mass within an expansion starting from a special
one dimensional Schroedinger problem. The one dimensional problem makes the
pion mass depend on the quark mass through a simple quadratic relation which is
shown to be compatible also with numerical data obtained in four dimensions.Comment: 14 pages, 1 figur
Calculating the Rest Tension for a Polymer of String Bits
We explore the application of approximation schemes from many body physics,
including the Hartree-Fock method and random phase approximation (RPA), to the
problem of analyzing the low energy excitations of a polymer chain made up of
bosonic string bits. We accordingly obtain an expression for the rest tension
of the bosonic relativistic string in terms of the parameters
characterizing the microscopic string bit dynamics. We first derive an exact
connection between the string tension and a certain correlation function of the
many-body string bit system. This connection is made for an arbitrary
interaction potential between string bits and relies on an exact dipole sum
rule. We then review an earlier calculation by Goldstone of the low energy
excitations of a polymer chain using RPA. We assess the accuracy of the RPA by
calculating the first order corrections. For this purpose we specialize to the
unique scale invariant potential, namely an attractive delta function potential
in two (transverse) dimensions. We find that the corrections are large, and
discuss a method for summing the large terms. The corrections to this improved
RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint,
UFIFT-HEP-94
- …