914 research outputs found

    Ex post evaluation of the management and implementation of cohesion policy 2000-06 (ERDF)

    Get PDF
    This report has been drafted by the European Policies Research Centre (University of Strathclyde) as part of an ex post evaluation of the management and implementation systems for Cohesion policy, 2000-06, which has been commissioned by DG REGIO and which is being managed by EPRC and Metis (Vienna) under European Commission contract no: 2007.CE.16.0.AT.034. The report provides an overview of the main features of management and implementation systems across the EU25 in the 2000-06 period (2004-06 for the EU10) and has been drafted by Professor John Bachtler, Laura Polverari and Frederike Gross, with assistance from Dr Sara Davies and Ruth Downes. The research is based on studies of individual countries undertaken by EPRC together with national experts from each of the EU25 Member States. The authors are grateful for helpful comments from the DG REGIO Evaluation Unit and Geographical Units, in particular Anna Burylo, Veronica Gaffey and Kai Stryczynski. Any errors or omissions remain the responsibility of the authors

    Dynamical mass generation by source inversion: Calculating the mass gap of the Gross-Neveu model

    Get PDF
    We probe the U(N) Gross-Neveu model with a source-term JΨˉΨJ\bar{\Psi}\Psi. We find an expression for the renormalization scheme and scale invariant source J^\hat{J}, as a function of the generated mass gap. The expansion of this function is organized in such a way that all scheme and scale dependence is reduced to one single parameter d. We get a non-perturbative mass gap as the solution of J^=0\hat{J}=0. In one loop we find that any physical choice for d gives good results for high values of N. In two loops we can determine d self-consistently by the principle of minimal sensitivity and find remarkably accurate results for N>2.Comment: 13 pages, 3 figures, added referenc

    Correlation energies of inhomogeneous many-electron systems

    Full text link
    We generalize the uniform-gas correlation energy formalism of Singwi, Tosi, Land and Sjolander to the case of an arbitrary inhomogeneous many-particle system. For jellium slabs of finite thickness with a self-consistent LDA groundstate Kohn-Sham potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo results. For a helium atom we also obtain a good correlation energy.Comment: 4 pages,1 figur

    Determination of the anomalous dimension of gluonic operators in deep inelastic scattering at O(1/N_f)

    Get PDF
    Using large N_f methods we compute the anomalous dimension of the predominantly gluonic flavour singlet twist-2 composite operator which arises in the operator product expansion used in deep inelastic scattering. We obtain a d-dimensional expression for it which depends on the operator moment n. Its expansion in powers of epsilon = (4-d)/2 agrees with the explicit exact three loop MSbar results available for n less than or equal to 8 and allows us to determine some new information on the explicit n-dependence of the three and higher order coefficients. In particular the n-dependence of the three loop anomalous dimension gamma_{gg}(a) is determined in the C_2(G) sector at O(1/N_f).Comment: 26 latex pages, 7 postscript figure

    The mass gap and vacuum energy of the Gross-Neveu model via the 2PPI expansion

    Get PDF
    We introduce the 2PPI (2-point-particle-irreducible) expansion, which sums bubble graphs to all orders. We prove the renormalizibility of this summation. We use it on the Gross-Neveu model to calculate the mass gap and vacuum energy. After an optimization of the expansion, the final results are qualitatively good.Comment: 14 pages,19 eps figures, revtex

    PR-box correlations have no classical limit

    Full text link
    One of Yakir Aharonov's endlessly captivating physics ideas is the conjecture that two axioms, namely relativistic causality ("no superluminal signalling") and nonlocality, so nearly contradict each other that a unique theory - quantum mechanics - reconciles them. But superquantum (or "PR-box") correlations imply that quantum mechanics is not the most nonlocal theory (in the sense of nonlocal correlations) consistent with relativistic causality. Let us consider supplementing these two axioms with a minimal third axiom: there exists a classical limit in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this classical limit, PR-box correlations violate relativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson's bound without assuming quantum mechanics.Comment: for a video of this talk at the Aharonov-80 Conference in 2012 at Chapman University, see quantum.chapman.edu/talk-10, published in Quantum Theory: A Two-Time Success Story (Yakir Aharonov Festschrift), eds. D. C. Struppa and J. M. Tollaksen (New York: Springer), 2013, pp. 205-21

    Interplay of Three-Body Interactions in the EOS of Nuclear Matter

    Get PDF
    The equation of state of symmetric nuclear matter has been investigated within Brueckner approach adopting the charge-dependent Argonne V18V_{18} two-body force plus a microscopic three-body force based on a meson-exchange model. The effects on the equation of state of the individual processes giving rise to the three-body force are explored up to high baryonic density. It is found that the major role is played by the competition between the strongly repulsive (σ,ω)(\sigma, \omega) exchange term with virtual nucleon-antinucleon excitation and the large attractive contribution due to (σ,ω)(\sigma, \omega) exchange with N(1440)N^*(1440) resonance excitation. The net result is a repulsive term which shifts the saturation density corresponding to the only two-body force much closer to the empirical value, while keeping constant the saturation energy per particle. The contribution from (π,ρ)(\pi, \rho) exchange 3BF is shown to be attractive and rather small. The analysis of the separate three-body force contributions allows to make a comparison with the prediction of Dirac-Brueckner approach which is supposed to incorporate via the {\it dressed} Dirac spinors the same virtual nucleon-antinucleon excitations as in the present three-body force. The numerical results suggest that the three-body force components missing from the Dirac-Brueckner approach are not negligible, especially at high density. The calculation of the nuclear mean field and the effective mass shows that the three-body force affects to a limited extent such properties.Comment: 12 pages 7 figure

    Three loop renormalization of the SU(N_c) non-abelian Thirring model

    Get PDF
    We renormalize to three loops a version of the Thirring model where the fermion fields not only lie in the fundamental representation of a non-abelian colour group SU(N_c) but also depend on the number of flavours, N_f. The model is not multiplicatively renormalizable in dimensional regularization due to the generation of evanescent operators which emerge at each loop order. Their effect in the construction of the true wave function, mass and coupling constant renormalization constants is handled by considering the projection technique to a new order. Having constructed the MSbar renormalization group functions we consider other massless independent renormalization schemes to ensure that the renormalization is consistent with the equivalence of the non-abelian Thirring model with other models with a four-fermi interaction. One feature to emerge from the computation is the establishment of the fact that the SU(N_f) Gross Neveu model is not multiplicatively renormalizable in dimensional regularization. An evanescent operator arises first at three loops and we determine its associated renormalization constant explicitly.Comment: 40 latex pages, 14 postscript figure

    Relativistic description of electron scattering on the deuteron

    Full text link
    Within a quasipotential framework a relativistic analysis is presented of the deuteron current. Assuming that the singularities from the nucleon propagators are important, a so-called equal time approximation of the current is constructed. This is applied to both elastic and inelastic electron scattering. As dynamical model the relativistic one boson exchange model is used. Reasonable agreement is found with a previous relativistic calculation of the elastic electromagnetic form factors of the deuteron. For the unpolarized inelastic electron scattering effects of final state interactions and relativistic corrections to the structure functions are considered in the impulse approximation. Two specific kinematic situations are studied as examples.Comment: (19 pages in revtex + 15 figures not included, available upon request.) report THU-93-10
    corecore