25,445 research outputs found

    Sputtered gold mask for deep chemical etching of silicon

    Get PDF
    Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid

    Confinement in the 3-dimensional Gross-Neveu model

    Full text link
    We consider the NN-components 3-dimensional massive Gross-Neveu model compactified in one spatial direction, the system being constrained to a slab of thickness LL. We derive a closed formula for the effective renormalized LL-dependent coupling constant in the large-N limit, using bag-model boundary conditions. For values of the fixed coupling constant in absence of boundaries λ≄λc≃19.16\lambda \geq \lambda_c \simeq 19.16, we obtain ultra-violet asymptotic freedom (for L→0L \to 0) and confinement for a length L(c)L^{(c)} such that 2.07m−1<L(c)â‰Č2.82m−12.07 m^{-1} < L^{(c)} \lesssim 2.82 m^{-1}, mm being the fermionic mass. Taking for mm an average of the masses of the quarks composing the proton, we obtain a confining legth Lp(c)L^{(c)}_p which is comparable with an estimated proton diameter.Comment: Latex, 4 pages, 2 figures (one new), some changes in tex

    The stability of the spectator, Dirac, and Salpeter equations for mesons

    Get PDF
    Mesons are made of quark-antiquark pairs held together by the strong force. The one channel spectator, Dirac, and Salpeter equations can each be used to model this pairing. We look at cases where the relativistic kernel of these equations corresponds to a time-like vector exchange, a scalar exchange, or a linear combination of the two. Since the model used in this paper describes mesons which cannot decay physically, the equations must describe stable states. We find that this requirement is not always satisfied, and give a complete discussion of the conditions under which the various equations give unphysical, unstable solutions

    Mid-IR continuous-wave fiber-laser-pumped optical parametric oscillators

    Get PDF
    We review recent developments in continuous-wave mid-infrared optical parametric oscillators pumped by fiber lasers. Such devices are potentially valuable spectroscopic sources providing high output powers and rapid, wide-range tuning in the mid-infrared molecular fingerprint region

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94

    Macroscopic Quantum Tunneling of a Bose-Einstein Condensate with Attractive Interaction

    Full text link
    A Bose-Einstein condensate with attractive interaction can be metastable if it is spatially confined and if the number of condensate bosons N0N_0 is below a certain critical value NcN_{\rm c}. By applying a variational method and the instanton techinique to the Gross-Pitaevskii energy functional, we find analytically the frequency of the collective excitation and the rate of macroscopic quantum tunneling (MQT). We show that near the critical point the tunneling exponent vanishes according to (1−N0/Nc)54(1-N_0/N_c)^\frac{5}{4} and that MQT can be a dominant decay mechanism of the condensate for N0N_0 very close to NcN_{\rm c}.Comment: RevTex 4 pages with 1 postscript figure. Accepted for publication in Physical Review Letter

    Vortices in Bose-Einstein-Condensed Atomic Clouds

    Full text link
    The properties of vortex states in a Bose-Einstein condensed cloud of atoms are considered at zero temperature. Using both analytical and numerical methods we solve the time-dependent Gross-Pitaevskii equation for the case when a cloud of atoms containing a vortex is released from a trap. In two dimensions we find the simple result that the time dependence of the cloud radius is given by (1+ω2t2)1/2(1+\omega^2t^2)^{1/2}, where ω\omega is the trap frequency. We calculate and compare the expansion of the vortex core and the cloud radius for different numbers of particles and interaction strengths, in both two and three dimensions, and discuss the circumstances under which vortex states may be observed experimentally.Comment: Revtex, 11 pages including 5 eps figures, submitted to Phys. Rev. A; new reference added, remark added in Sec. IIIB, axis label added in Fig.

    Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic BCS-RPA approximation

    Full text link
    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry RPA) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximationsComment: 4 pages, 1 figur
    • 

    corecore