57 research outputs found

    The Collective Field Theory of a Singular Supersymmetric Matrix Model

    Full text link
    The supersymmetric collective field theory with the potential v(x)=ωxηxv'(x)=\omega x-{\eta\over x} is studied, motivated by the matrix model proposed by Jevicki and Yoneya to describe two dimensional string theory in a black hole background. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeros of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a majorana fermion. The xx space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.Comment: Revtex 8 pages, Submitted to Phys. Rev. D. References and preprint numbers have been adde

    Systematic 1/N1/N corrections for bosonic and fermionic vector models without auxiliary fields

    Full text link
    In this paper, colorless bilocal fields are employed to study the large NN limit of both fermionic and bosonic vector models. The Jacobian associated with the change of variables from the original fields to the bilocals is computed exactly, thereby providing an exact effective action. This effective action is shown to reproduce the familiar perturbative expansion for the two and four point functions. In particular, in the case of fermionic vector models, the effective action correctly accounts for the Fermi statistics. The theory is also studied non-perturbatively. The stationary points of the effective action are shown to provide the usual large NN gap equations. The homogeneous equation associated with the quadratic (in the bilocals) action is simply the two particle Bethe Salpeter equation. Finally, the leading correction in 1N1\over N is shown to be in agreement with the exact SS matrix of the model.Comment: 24 pages, uses REVTEX macros. Replaced with final version to appear in Phys. Rev.

    Modeling bursts and heavy tails in human dynamics

    Full text link
    Current models of human dynamics, used from risk assessment to communications, assume that human actions are randomly distributed in time and thus well approximated by Poisson processes. We provide direct evidence that for five human activity patterns the timing of individual human actions follow non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long periods of inactivity. We show that the bursty nature of human behavior is a consequence of a decision based queuing process: when individuals execute tasks based on some perceived priority, the timing of the tasks will be heavy tailed, most tasks being rapidly executed, while a few experiencing very long waiting times. We discuss two queueing models that capture human activity. The first model assumes that there are no limitations on the number of tasks an individual can hadle at any time, predicting that the waiting time of the individual tasks follow a heavy tailed distribution with exponent alpha=3/2. The second model imposes limitations on the queue length, resulting in alpha=1. We provide empirical evidence supporting the relevance of these two models to human activity patterns. Finally, we discuss possible extension of the proposed queueing models and outline some future challenges in exploring the statistical mechanisms of human dynamics.Comment: RevTex, 19 pages, 8 figure

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target

    Unforeseen plant phenotypic diversity in a dry and grazed world

    Get PDF
    23 páginas..- 4 figuras y 7 figuras.- 50 referencias y 90 referenciasEarth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure—two major drivers of global change4,5,6—shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8,9,10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.This research was funded by the European Research Council (ERC Grant agreement 647038 1004 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041). N.G. was supported by CAP 20–25 (16-IDEX-0001) and the AgreenSkills+ fellowship programme which has received funding from the European Union’s Seventh Framework Programme under grant agreement FP7-609398 (AgreenSkills+ contract). F.T.M. acknowledges support from the King Abdullah University of Science and Technology (KAUST), the KAUST Climate and Livability Initiative, the University of Alicante (UADIF22-74 and VIGROB22-350), the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00), and the Synthesis Center (sDiv) of the German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig (iDiv). Y.L.B.-P. was supported by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. L.W. acknowledges support from the US National Science Foundation (EAR 1554894). G.M.W. acknowledges support from the Australian Research Council (DP210102593) and TERN. M.B is supported by a Ramón y Cajal grant from Spanish Ministry of Science (RYC2021-031797-I). L.v.d.B. and K.T. were supported by the German Research Foundation (DFG) Priority Program SPP-1803 (TI388/14-1). A.F. acknowledges the financial support from ANID PIA/BASAL FB210006 and Millenium Science Initiative Program NCN2021-050. A.J. was supported by the Bavarian Research Alliance for travel and field work (BayIntAn UBT 2017 61). A.L. and L.K. acknowledge support from the German Research Foundation, DFG (grant CRC TRR228) and German Federal Government for Science and Education, BMBF (grants 01LL1802C and 01LC1821A). B.B. and S.U. were supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology. P.J.R. and A.J.M. acknowledge support from Fondo Europeo de Desarrollo Regional through the FEDER Andalucía operative programme, FEDER-UJA 1261180 project. E.M.-J. and C.P. acknowledge support from the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00). D.J.E. was supported by the Hermon Slade Foundation. J.D. and A.Rodríguez acknowledge support from the FCT (2020.03670.CEECIND and SFRH/BDP/108913/2015, respectively), as well as from the MCTES, FSE, UE and the CFE (UIDB/04004/2021) research unit financed by FCT/MCTES through national funds (PIDDAC). S.C.R. acknowledges support from the US Department of Energy (DE-SC-0008168), US Department of Defense (RC18-1322), and the US Geological Survey Ecosystems Mission Area. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government. E.H.-S. acknowledges support from Mexican National Science and Technology Council (CONACYT PN 5036 and 319059). A.N. and C. Branquinho. acknowledge the support from FCT—Fundação para a Ciência e a Tecnologia (CEECIND/02453/2018/CP1534/CT0001, PTDC/ASP-SIL/7743/ 2020, UIDB/00329/2020), from AdaptForGrazing project (PRR-C05-i03-I-000035) and from LTsER Montado platform (LTER_EU_PT_001). Field work of G.P. and J.M.Z. was supported by UNRN (PI 40-C-873).Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore