2,145 research outputs found

    Modified algebraic Bethe ansatz for XXZ chain on the segment - III - Proof

    Get PDF
    In this paper, we prove the off-shell equation satisfied by the transfer matrix associated with the XXZ spin-12\frac12 chain on the segment with two generic integrable boundaries acting on the Bethe vector. The essential step is to prove that the expression of the action of a modified creation operator on the Bethe vector has an off-shell structure which results in an inhomogeneous term in the eigenvalues and Bethe equations of the corresponding transfer matrix.Comment: V2 published version, 16 page

    Permits vs. Offsets Under Investment Uncertainty

    Get PDF
    A global crediting mechanism would enable developing countries without binding emissions reduction targets to participate in the international carbon market. Linking the framework on Reducing Emissions from Deforestation and Forest Degradation (REDD) as an offset program to major cap-and-trade programs is a particularly promising approach to increase both climate finance and cost-efficiency. However, the coexistence of permits and offsets also creates a classic case of interaction effects. In this paper, we explore how the availability of multiple compliance instruments affects energy investment incentives. Alternative trading and linkage schemes are compared using a real options model of firm-level investment decisions under stochastic prices and the ability to delay investments. We first isolate the critical design factors that drive private investments in the energy sector. We then identify policy regimes that balance the different concerns in the polarized debate for and against the inclusion of forest carbon offsets

    Angular momentum redistribution by mixed modes in evolved low-mass stars. I. Theoretical formalism

    Get PDF
    Seismic observations by the space-borne mission \emph{Kepler} have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to reproduce the observed rotation rates by several orders of magnitude, and predict a drastic spin-up of red giant cores instead. New efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider the Transformed Eulerian Mean (TEM) formalism, introduced by Andrews \& McIntyre (1978), that allows us to consider the combined effect of both the wave momentum flux in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation, and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean equations. The formalism is finally applied to a 1.3M1.3 M_\odot benchmark model, representative of observed CoRoT and \emph{Kepler} oscillating evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate requires realistic values of mode amplitudes. This is provided in a companion paper.Comment: Accepted in A&A, 11 pages, and 6 figure

    Discrete Cylindrical Vector Beam Generation from an Array of Optical Fibers

    Full text link
    A novel method is presented for the beam shaping of far field intensity distributions of coherently combined fiber arrays. The fibers are arranged uniformly on the perimeter of a circle, and the linearly polarized beams of equal shape are superimposed such that the far field pattern represents an effective radially polarized vector beam, or discrete cylindrical vector (DCV) beam. The DCV beam is produced by three or more beams that each individually have a varying polarization vector. The beams are appropriately distributed in the near field such that the far field intensity distribution has a central null. This result is in contrast to the situation of parallel linearly polarized beams, where the intensity peaks on axis

    Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    Get PDF
    The detection of mixed modes in subgiants and red giants by the CoRoT and \emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 MM_{\odot} at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.Comment: Accepted in A&A, 7 pages, 8 figure

    Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5

    Get PDF
    Functionalized 4,4′-biphenyldicarboxylic acid molecules with additional amine, alkyne, azide or nitro groups were prepared and applied in the synthesis of novel metal-organic frameworks and mixed-linker metal-organic frameworks isoreticular to DUT-5. The properties of the frameworks could be tuned by varying the number of functional groups in the materials and the amine groups were employed in post-synthetic modification reactions without changing the framework structure or significantly decreasing the porosity of the materials. © The Royal Society of Chemistry 2015

    MAARS: a novel high-content acquisition software for the analysis of mitotic defects in fission yeast

    Get PDF
    Faithful segregation of chromosomes during cell division relies on multiple processes such as chromosome attachment and correct spindle positioning. Yet mitotic progression is defined by multiple parameters, which need to be quantitatively evaluated. To study the spatiotemporal control of mitotic progression, we developed a high-content analysis (HCA) approach that combines automated fluorescence microscopy with real-time quantitative image analysis and allows the unbiased acquisition of multiparametric data at the single-cell level for hundreds of cells simultaneously. The Mitotic Analysis and Recording System (MAARS) provides automatic and quantitative single-cell analysis of mitotic progression on an open-source platform. It can be used to analyze specific characteristics such as cell shape, cell size, metaphase/anaphase delays, and mitotic abnormalities including spindle mispositioning, spindle elongation defects, and chromosome segregation defects. Using this HCA approach, we were able to visualize rare and unexpected events of error correction during anaphase in wild-type or mutant cells. Our study illustrates that such an expert system of mitotic progression is able to highlight the complexity of the mechanisms required to prevent chromosome loss during cell division

    Wave turbulence on the surface of a fluid in a high-gravity environment

    Get PDF
    International audienceWe report on the observation of gravity-capillary wave turbulence on the surface of a fluid in a high-gravity environment. By using a large-diameter centrifuge, the effective gravity acceleration is tuned up to 20 times the Earth gravity. The transition frequency between the gravity and capillary regimes is thus increased up to one decade as predicted theoretically. A frequency power-law wave spectrum is observed in each regime and is found to be independent of the gravity level and of the wave steepness. While the timescale separation required by weak turbulence is well verified experimentally regardless of the gravity level, the nonlinear and dissipation timescales are found to be independent of the scale, as a result of the finite size effects of the system (large-scale container modes) that are not taken currently into account theoretically

    Global shortfalls of knowledge on anuran tadpoles

    Get PDF
    Despite the amount of data on different aspects of biodiversity, such as species distributions, taxonomy, or phylogenetics, there are still significant gaps and biases in the available information. This is particularly true for life history traits, with fragmentary data for most taxa, especially those with complex life cycles. Anurans (frogs and toads) show larval (premetamorphic) stages that are in general radically decoupled from adult forms in most biological aspects. Our understanding of this group is highly uneven, as the main wide-scope investigations focus on adult specimens and larval stages remain unknown for a significant part of the anuran tree. The main purpose of this work was to estimate the extent of knowledge gaps regarding the diversity of tadpoles, interpret their biological and geographical patterns, and discuss possible explanations and implications for other large-scale analyses. Our findings show that more than half of the anuran species described to date still lack information on their embryonic/larval stages. Furthermore, knowledge varies among taxonomic groups, larval ecomorphological guilds, and world ecoregions. Description percentages generally decrease in lineages with a higher proportion of species known or suspected to have endotrophic development. Also, geographic areas with the highest levels of ignorance in larval biology (Tropical Andes and New Guinea) coincide with the highest diversity of endotrophic guilds. Among exotrophic larvae, generalized lentic-lotic tadpoles have the widest distribution and levels of knowledge, whereas specialized lotic, fossorial, and terrestrial forms are more taxonomically and geographically restricted. Further large-scale analyses on tadpole biology are crucial for their impact in varied scientific disciplines including anuran conservation. At a conceptual level, the discussion of the anuran biphasic life cycle is pertinent in the context of shortfalls of biodiversity knowledge and their interrelationships.Fil: Vera Candioti, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Baldo, Juan Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Grosjean, S.. Muséum National d'Histoire Naturelle; FranciaFil: Pereyra, Martín Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Nori, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentin
    corecore