39 research outputs found

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    State of the Climate in 2016

    Get PDF

    Der Status des ClaMS Modellsystems

    No full text

    Technical note: A stratospheric climatology for O<sub>3</sub>, H<sub>2</sub>O and CH<sub>4</sub> derived from HALOE measurements

    Get PDF
    International audienceThe Halogen Occultation Experiment (HALOE) on board the Upper Atmosphere research satellite (UARS) has observed mixing ratios of important trace species in the stratosphere over more than a decade since 1991. Here we present a climatology for the stratosphere compiled from the HALOE data for ozone, H2O and CH4 for the period from 1991 to 2002. In this approach, the data are averaged over equivalent latitude instead of latitude in order to correctly reproduce the gradients at the transport barriers like the polar vortex edge. The climatology is compiled for 5 degree equivalent latitude bins. The seasonal dependence is taken into account by choosing intervals of one month. The climatology is available as an electronic supplement

    Impact of stratospheric water vapor enhancements caused by CH4 and H2O increase on polar ozone loss

    No full text
    Possible causes of a future increase in stratospheric H2O are increasing tropospheric methane levels and a rise in tropospheric H-2 due to leakages from a possible increased integration of hydrogen into the energy supply system. Here we quantify the direct chemical impact of potential future stratospheric H2O increases on Arctic ozone loss using the cold Arctic winter 2004/2005 as the basis for our study. We present simulations with the three-dimensional chemistry transport model CLaMS using enhanced stratospheric H2O values. Previous studies emphasized that increasing H2O concentrations cause stratospheric cooling, and some have suggested that this could significantly increase halogen-induced polar ozone loss. The impact of both increased stratospheric H2O values and decreased temperatures on simulated ozone depletion is investigated. Assuming an average increase of water vapor in the lower polar stratosphere of approximate to 0.58 ppmv (averaged over equivalent latitudes >= 65 degrees N, from 400-550 K potential temperature and from December to March) and in addition decreased temperatures (-0.2 K) yields at most 6.8 DU (approximate to 11 %) more accumulated ozone loss in mid-March for the Arctic polar winter 2004/2005 compared to the ozone loss for undisturbed conditions. The assumed H2O enhancement in future decades is in the range of current model predictions. Considering in addition the decrease of the future chlorine loading (-40 %) of enhanced H2O values (see above) yields at most 3.4 DU (10 %) of accumulated ozone loss in springtime compared to current H2O values. The impact of a potential future hydrogen economy alone (assuming an averaged increase of 0.18 ppmv H2O in the lower stratosphere) on springtime accumulated ozone loss is found to be negligible (at most 2.5 DU (4 %)) in this study

    Technical note: A stratospheric climatology for O<sub>3</sub>, H<sub>2</sub>O, CH<sub>4</sub>, NO<sub>x</sub>, HCl and HF derived from HALOE measurements

    No full text
    International audienceThe Halogen Occultation Experiment (HALOE) on board the Upper Atmosphere Research Satellite (UARS) has observed mixing ratios of important trace species in the stratosphere for more than a decade since 1991. Here we present a climatology for the stratosphere compiled from HALOE O3, H2O, CH4, NOx, HCl, and HF data for the period from 1991 to 2002. In this approach, the data are averaged over equivalent latitude instead of latitude in order to correctly reproduce the gradients at the transport barriers like the polar vortex edge. The climatology is compiled for 5 degree equivalent latitude bins. Seasonal dependence is taken into account by choosing intervals of one month. The climatology is available as an electronic supplement
    corecore