69 research outputs found

    Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment that Counter Proinflammation Signals

    Get PDF
    Aspirin (ASA) is unique among current therapies because it acetylates cyclooxygenase (COX)-2 enabling the biosynthesis of R-containing precursors of endogenous antiinflammatory mediators. Here, we report that lipidomic analysis of exudates obtained in the resolution phase from mice treated with ASA and docosahexaenoic acid (DHA) (C22:6) produce a novel family of bioactive 17R-hydroxy-containing di- and tri-hydroxy-docosanoids termed resolvins. Murine brain treated with aspirin produced endogenous 17R-hydroxydocosahexaenoic acid as did human microglial cells. Human COX-2 converted DHA to 13-hydroxy-DHA that switched with ASA to 17R-HDHA that also proved a major route in hypoxic endothelial cells. Human neutrophils transformed COX-2-ASA–derived 17R-hydroxy-DHA into two sets of novel di- and trihydroxy products; one initiated via oxygenation at carbon 7 and the other at carbon 4. These compounds inhibited (IC50 ∼50 pM) microglial cell cytokine expression and in vivo dermal inflammation and peritonitis at ng doses, reducing 40–80% leukocytic exudates. These results indicate that exudates, vascular, leukocytes and neural cells treated with aspirin convert DHA to novel 17R-hydroxy series of docosanoids that are potent regulators. These biosynthetic pathways utilize omega-3 DHA and EPA during multicellular events in resolution to produce a family of protective compounds, i.e., resolvins, that enhance proresolution status

    Maresin 1 promotes inflammatory resolution, neuroprotection, and functional neurological recovery after Spinal Cord Injury

    Get PDF
    Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI.SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed resolution leads to detrimental effects, including propagated tissue damage and impaired wound healing, as occurs after spinal cord injury (SCI). We report that inflammation after SCI is dysregulated in part due to inappropriate synthesis of proresolving lipid mediators. We demonstrate that the administration of the resolution agonist referred to as maresin 1 (MaR1) after SCI actively propagates resolution processes at the lesion site and improves neurological outcome. MaR1 is identified as an interventional candidate to attenuate dysregulated lesional inflammation and to restore functional recovery after SCI

    Molecular Circuits of Resolution in the Eye

    No full text
    Lipid autacoids have well-established key roles in physiology and pathophysiology. Eicosanoids derived from ω-6 arachidonic acid (AA) have long been recognized for their roles in cardiovascular and renal functions, and vascular tone, as well as regulating inflammatory and immune functions. It is now appreciated that AA is a substrate for generating lipid mediators with anti-inflammatory and proresolving properties, namely lipoxins (i.e., LXA4), which are an integral component for the successful execution of beneficial and essential acute inflammatory responses. In addition to AA, the ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also serve as substrates to generate potent and protective autacoids, such as resolvins and neuroprotectin (i.e., NPD1), respectively. These ω-3–derived signals may mediate the remarkable protective action of essential dietary ω-3 PUFAs. Formation and bioactivity of lipid mediators in the eye are relatively unexplored and of considerable interest, as the eye contains highly specialized tissues, including the transparent avascular and immune-privileged cornea, and the neuro-retina. A rapidly emerging field has identified key biosynthetic enzymes, receptors, and temporally defined endogenous formation of ω-3– and ω-6–derived protective lipid circuits in the eye. Protective endogenous roles of LXA4 and NPD1 have been established utilizing lipidomic analysis, knockout mice, and pharmacological, genetic, and dietary manipulation, providing compelling evidence that these intrinsic lipid autacoid circuits play essential roles in restraining inflammation, promoting wound healing, inhibiting pathological angiogenesis, and providing neuroprotection in the delicate visual axis
    • …
    corecore