424 research outputs found
Two-Page Book Embeddings of 4-Planar Graphs
Back in the Eighties, Heath showed that every 3-planar graph is
subhamiltonian and asked whether this result can be extended to a class of
graphs of degree greater than three. In this paper we affirmatively answer this
question for the class of 4-planar graphs. Our contribution consists of two
algorithms: The first one is limited to triconnected graphs, but runs in linear
time and uses existing methods for computing hamiltonian cycles in planar
graphs. The second one, which solves the general case of the problem, is a
quadratic-time algorithm based on the book-embedding viewpoint of the problem.Comment: 21 pages, 16 Figures. A shorter version is to appear at STACS 201
Planar L-Drawings of Directed Graphs
We study planar drawings of directed graphs in the L-drawing standard. We
provide necessary conditions for the existence of these drawings and show that
testing for the existence of a planar L-drawing is an NP-complete problem.
Motivated by this result, we focus on upward-planar L-drawings. We show that
directed st-graphs admitting an upward- (resp. upward-rightward-) planar
L-drawing are exactly those admitting a bitonic (resp. monotonically
increasing) st-ordering. We give a linear-time algorithm that computes a
bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or
reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Towards shortest longest edges in orthogonal graph drawing
Inspired by a challenge during Graph Drawing 2010 "Find an orthogonal drawing whose longest edge is as short as possible", we investigate techniques to incorporate this goal into the "standard" topology-shape-metrics approach at moderate extra computational complexity.
Experiments indicate that this project is worth pursuing
MolMap - Visualizing Molecule Libraries as Topographic Maps
We present a new application for graph drawing and visualization in the context of drug discovery. Combining the scaffold-based cluster hierarchy with molecular similarity graphs — both standard concepts in cheminfor- matics — allows one to get new insights for analyzing large molecule libraries. The derived clustered graphs represent different aspects of structural similarity. We suggest visualizing them as topographic maps. Since the cluster hierarchy does not reflect the underlying graph structure as in (Gronemann and Jünger, 2012), we suggest a new partitioning algorithm that takes the edges of the graph into account. Experiments show that the new algorithm leads to significant improvements in terms of the edge lengths in the obtained drawings
Processing and Transmission of Information
Contains reports on three research projects.Lincoln Laboratory, Purchase Order DDL B-00368U. S. ArmyU. S. NavyU. S. Air Force under Air Force Contract AF19(604)-7400National Institutes of Health (Grant MH-04737-03)National Science Foundation (Grant G-16526
Computing Storyline Visualizations with Few Block Crossings
Storyline visualizations show the structure of a story, by depicting the
interactions of the characters over time. Each character is represented by an
x-monotone curve from left to right, and a meeting is represented by having the
curves of the participating characters run close together for some time. There
have been various approaches to drawing storyline visualizations in an
automated way. In order to keep the visual complexity low, rather than
minimizing pairwise crossings of curves, we count block crossings, that is,
pairs of intersecting bundles of lines.
Partly inspired by the ILP-based approach of Gronemann et al. [GD 2016] for
minimizing the number of pairwise crossings, we model the problem as a
satisfiability problem (since the straightforward ILP formulation becomes more
complicated and harder to solve). Having restricted ourselves to a decision
problem, we can apply powerful SAT solvers to find optimal drawings in
reasonable time. We compare this SAT-based approach with two exact algorithms
for block crossing minimization, using both the benchmark instances of
Gronemann et al. and random instances. We show that the SAT approach is
suitable for real-world instances and identify cases where the other algorithms
are preferable.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Processing and Transmission of Information
Contains reports on two research projects.Lincoln Laboratory (Purchase Order DDL-B-00306)United States ArmyUnited States NavyUnited States Air Force (Contract AF19(604)-5200
- …
