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A. PICTURE-PROCESSING RESEARCH

To facilitate the study of images and image-coding methods, we are assembling a

research device that will enable us to make computer tapes from original photographs

and to reverse this process. The equipment will be of such quality and flexibility that

TAPE RECORDER

Fig. IX-1. Making tapes from pictures.

it can be operated easily and reproducibly so that the appearance of the pictures will be

affected only by the television system parameters and not by the idiosyncrasies of the

*This research was supported in part by Purchase Order DDL B-00306 with Lincoln

Laboratory, a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U.S. Army, Navy, and Air Force under Air Force Contract

AF19(604)-5200.
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STATISTICAL DATA processing circuitry and tubes. With this

device we shall be able to make a tape from
709 OR any picture, including color originals. We
TX-0

shall also be able to so program the computer

that the action of any conceivable circuit or
INPUT TAPE UNIT, OUTPUT TAPE UNIT, system can be simulated. The operation of
ORIGINAL VIDEO PROCESSED VIDEO
INFORMATION PROGRAM INFORMATION this equipment is illustrated in Figs. IX-1,

Fig. IX-2. Use of the computer for IX-2, and IX-3.

measurements and video As a part of the precision picture recording
processing. and reproducing system, a digitally controlled

deflection circuit has been designed. It is
completely transistorized and uses magnetic deflection. It can be programmed to scan
parts of a picture in any desired sequence. A tunnel diode oscillator generates clock

pulses; the clock rate, the rate of moving from one picture element to the next, will be

6 kc (as limited by the computer tape requirements), but could be as high as 30 kc.

Two nonlinear amplifiers are being constructed: one for the recording mode, and

one for the playback mode. They are required to have variable transfer curves. We

employ piecewise linear approximation techniques. Thus, by using quite simple diode

circuits, we achieve a variety of different transfer curves that should be adequate for
our purpose.

The link between the scanning device and the computer that is used to simulate coding

systems, consists of various gating, recording, and playback functions.

TAPE PLAYER

GENERATOR

DIGITAL-ANALOG 

LCO

CONVERTOR DIGITAL

DEFLECTION
GENERATOR

NONLINEAR
AMPLIFIER POWER

AMPLIFIER

DISPLAY TUBE RECORDING
CAMERA

Fig. IX-3. Displaying and recording the processed picture.
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An analog signal is converted, first, to digital form by the DATRAC converter, then

the 10-bit output of the converter is recorded on magnetic tape in IBM 709 computer

format by gating the 10 bits to the recording amplifier in 5-bit groups.

Playing back a digital record is accomplished by reversing the operation and com-

bining the two 5 -bit groups into a 10-bit group which is then decoded by a transistorized

digital-to-analog converter. The DAC converter furnishes the analog voltage for play-

back into the nonlinear amplifier.

A tunnel diode oscillator furnishes the 6-kc clock source for the entire system.

Most of the circuitry has been constructed, and only a small part of it is still in the

breadboard stage.

J. W. Pan, U. F. Gronemann, T. S. Huang,

J. E. Cunningham, W. F. Schreiber

B. ENCODING FOR TIME-DISCRETE MEMORYLESS CHANNELS

We report here upon some aspects of the problem of communication by means of

memoryless channels. A block diagram of a general communication system for such a

channel is shown in Fig. IX-4.

SOURCE SINK
R ENCODER -- CHANNEL -- DECODER

Fig. IX-4. Communication system for memoryless channel.

In 1959, Shannon (1) studied coding and decoding systems for a time-discrete but

amplitude-continuous channel with additive Gaussian noise, subject to the constraint that

all code words were required to have exactly the same power. Upper and lower bounds

were found for the probability of error when optimal codes and optimal decoding systems

are used. The lower bound followed from sphere-packing arguments, and the upper

bound was derived by using random-coding arguments.

In random coding for such a Gaussian channel, one considers the ensemble of codes

obtained by placing M points randomly on the surface of a sphere of radius (nP)l/2,

where nP is the power of each code word, and n = 2WT, with W the bandwidth of the

channel, and T the time length of each code word. More precisely, each point is placed

independently of all other points with a probability measure proportional to surface area

or, equivalently, to solid angle. Shannon's upper and lower bounds for the probability of

error are very close together for signaling rates from some Rcrit to channel capacity, C.

Fano (2) has recently studied the general discrete memoryless channel. For this

case the signals are not constrained to have exactly the same power. If random coding
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is used, the upper and lower bounds for the probability of error are, again, close

together for all rates R above some Rcrit

The detection scheme that was used in both of these studies is an optimal one, that

is, one that minimizes the probability of error for the given code. Such a scheme

requires that the decoder compute an a posteriori probability measure, or a quantity

equivalent to it, for each of, say, the M allowable code words. Since R is defined for

a given code (block) length n by the equation

R = In M
n

we have M = exp(nR).

In all cases in which optimum decoding is used, the lower bound on the probability of

error, P , has the form Pe > K exp(-E (R).n), where K is a constant that is inde-e' e
pendent of n. The behavior of E (R) as a function of R is described in Fig. IX-5. Simi-

larly, when optimum random coding is used, the probability of error is upper-bounded

by Pe < 2 exp(-E(R).n). (In general, construction of a random code involves the selection

of messages with some probability density P(x) from the set of all possible messages.

When P(x) is such that E(R) and E (R) coincide for R > Rcrit, the random code is

called "optimum.") It has been shown that E(R) = E (R) for all R > Rcrit as illustrated
crit'

in Fig. IX-5. We see that specification of

an extremely small probability of error

Eimplies (in general) a significantly large

E(o) ER)value for the code length n, and hence an

c extremely large value for the number of
Rcrit R code words M.

Fig. IX-5. The behavior of E *(R) and Kelly (3) has derived a class of codes

E(R) as a function of R. for continuous channels. These are block

codes in which the (exponentially large) set

of code words can be computed from a much smaller set of generators by a procedure

analogous to group coding for discrete channels. Unfortunately, there seems to be no

simple detection procedure for these codes. The receiver must generate each of the

possible transmitted combinations and must then compare them with the received signal.

The sequential encoding-decoding scheme of Wozencraft (4), extended by Reiffen (5),

is a code that is well suited to the purpose of reducing the average number of computa-

tions. They have shown (4, 5) that, for the general discrete and symmetric channel, the

average number of computations can be bounded by k • n 2 for all rates below some

R
comp

In this report, we consider the effect of constructing a discrete signal space in such

a way as to make the application of sequential encoding-decoding possible for the general
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(continuous) memoryless channel. The effect of this constraint on the probability of

error will be considered. In particular, Shannon's work (1) considered code selection

from an infinite ensemble, but in this investigation the ensemble is a finite ensemble.

The engineering advantage is that each code word can be sequentially generated from a

small set of basic waveforms. Ultimately, we propose to consider the problem of sequen-

tially decoding transmissions of this form.

1. Signal-Space Structure

We proceed to introduce a structured signal space, and to investigate the effect of a

particular structure on the exponent of the probability of error. Two cases will be

considered.

Case I: The power of each sample is less than or equal to P.

d

i I I I I I I I I

4 n

Fig. IX-6. Construction of a code word as a series of elements.

Let each code word of length n be constructed as a series of m elements, each

of which has the same length d, as shown in Fig. IX-6. Thus we have

n = n (1)
d; m

Each of the m elements is to be picked at random, with probability 1/1, from a set

X f of f waveforms (vectors)

X = {Xk; k=1. ... } (2)

The length, or "dimensionality," of each xk is d.

Let the set X be generated in the following manner: Each vector xk is picked at

random, with probability density P(xk), from the ensemble of all d-dimensional vectors

meeting the power constraint P. The probability density P(xk) is the same as that used

for the generation of the optimum unrestricted random code that yields the optimum

exponent E(R).

We have established the following theorem.

THEOREM: Let a general memoryless channel be represented by the set of transi-

tion probability densities {P(y Ix)}. Let E 2 , d(R) be the exponent of the probability of

error for the random code constructed above. Let E1, d(R) be the expected value of

Ef, d(R) averaged over all possible sets X . Then
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E, d(R) > E(R) -, d d in(edE( 0 ) + L-)
in l[

for R < R crit and

E d(R) > E(R) - In e2dC +
f, d df

for any R < C, where C, the channel capacity, is the rate for which E(R) = 0. Thus, if
1we define C s , the source capacity, as Cs - n L, we get

s s dd(E(0)-C)

El d(R) > E(R) -~ In e s) (5)

for R < R r i t and

E , d(R) > E(R) - In e d(C-Cs +1)1, d d (6)

for any R < C. In Appendix B, we include a proof of Eq. 3. The proof of Eq. 4 is

essentially the same as that for Eq. 3, but is much more complicated.

From Eqs. 3-6, we see that E ,d(R) can be made arbitrarily close to E(R) by proper

selection of I and d. Usually, the required number (L) of vectors in the set X I is quite

small.

All of the M code words may be sequentially generated (5) from the set Xk of I basic

waveforms. Thus, only f waveforms have to be stored, rather than the M = exp(nR)

waveforms which have to be stored with unrestricted optimal coding. Furthermore, I

is not a function of n. In our derivation we have used the probability density P(xk) that

K (A)

lim Kd(A) = 1/d
A-oo

for any d
lim Kd(A) = 0
A-0

Fig. IX-7. The behavior of Kd(A) as a function of A and d.
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makes the upper and lower bounds of the probability of error for unrestricted coding

close together for rates above Rcrit. Thus, with a peak-power constraint we find that

Ef, d(R) can be made close to the optimum exponent of the probability of error.

Case II: All code words have exactly the same power nP.

The requirement that all code words shall have exactly the same power can be met

by making each of the m elements in our signal space have exactly the same power.

This additional constraint produces an additional reduction in the value of Ef, d(R) that

we have computed for the Gaussian channel. In this case, we have shown that

E 2 d(R) > E(R) - Kd(A) E(0) - - ln d

for R < R rit* Here, Kd(A) is a function both of the signal-to-noise ratio A and of the

length d of each element. This function is plotted in Fig. IX-7.

(a) Deterministic signal spaces. In the particular case in which the channel is

Gaussian the probability of error is simply related to a set of energy distances between

the code words, and it is better not to generate the set X f of f vectors by choosing them

at random. In order to make all code words

have exactly the same power, each of the

basic waveforms must be picked as points

on a d-dimensional sphere of radius

(dP)1/2 The set X is then preferably

generated in such a way as to maximize

the minimum distance between any two

points (whenever possible). In Fig. IX-8

such a set X is shown for the case d = 2.

As an example, the binary case (d=1, 1=2)
Fig. IX-8. Geometry of the set X , for

will be discussed.
d = 2, 2 = 8, for a Gaussian
channel. (b) Example: The binary case (d=l,

2=2) for Gaussian channels. In this case

the set X of basic waveforms consists of two oppositely directed vectors. For voltage

signal-to-noise ratios A << 1, E2, 1 (R) is found to be exactly the same as the optimum

exponent E(R) for all R < C, in the limit as A -0. In general,

E 2 , 1 (R) = E(R) - K 1 (A) E(0)

for R < R . .crit Values of K 1 (A) for different A's are given in Table IX-1. These results

hold true when optimum decoding is performed. The case in which the channel output is

quantized into two levels before data processing is considered in Appendix A.

We have established a discrete signal space in which we may hope to encode and

decode in a sequential way. This restricted space is optimum in the sense that it yields
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Table IX-1.

A K 1 (A)

1 0.01

2 0. 1

3 0. 28

4 0.43

a probability of error that can be made close to optimum through proper selection of

I and d for all rates above some Rcrit
The author wishes to acknowledge very helpful discussions with Professer J. M.

Wozencraft and Professor E. M. Hofstetter. The original work of Professor R. M. Fano

provided the foundation for this work, and the author's debt to him is obvious. This

research was supported in part by a fellowship from the Government of Israel.

APPENDIX A

A Gaussian Channel Converted into a Binary Symmetric Channel

A Gaussian channel with a binary input (d= 1, 1=2) can be converted into a binary

symmetric channel by quantizing the output of the channel. Let E , 1(R) be the exponent2, 1
of the probability of error when the output of the channel is quantized as follows:

For all y > 0, y = 1

for antipodal input elements
For ally < 0, y = -1

where y is the output of the quantizer.

The channel is thus converted into a binary symmetric channel. Then it can be shown

that

E, 1 (R) E 2 , 1 (R) - K (A) E(0)

for R Rit. For K (A) we have
crit' q

2
lim K (A) = (A-1)
A-0 q 7

lim K (A)= 0 (A-2)
A-o q

On the other hand, it was established (see Table IX-1) that

E2, 1 (R) = E(R) for A < 2, approximately

140



(IX. PROCESSING AND TRANSMISSION OF INFORMATION)

Thus, combining these two results, we see that the loss incurred for small R/C in con-

verting the general Gaussian channel into a binary symmetric channel is approximately

equivalent to a signal power loss of 2 db, for all signal-to-noise ratios A < 2, approxi-

mately.

APPENDIX B

Unrestricted Random Coding

Let us consider a constant channel with input events represented by the points x of

a d-dimensional space X and output events represented by the points y of a d-dimensional

space Y. The conditional probability distribution P(y Ix) is defined by the channel and

is independent of the past of the transmission. Each particular message of length n is

constructed by selecting m = n/d input events independently at random with probability

P(x) from the input ensemble X.

For this situation, Fano (2) has shown that the average probability of error for all

rates below Rcrit is given by

P e< MP for R crit (B-l)
e 1 crit

where M = exp(nR), P 1 
= exp[my(l/2)], and

y n P (x)(P(y x)) 1 /2 (B-la)

Thus Pe < exp[-nE(R)], where nE(R) = -my(1/2) - R, and

E(R) m - R = -y( - R (B-2)

where d = n/m.

Restricted Random Coding

Next, let us consider the restricted random coding of the theorem, and evaluate the

corresponding exponent of the probability of error. In this case, each code word of

length n consists of a series of m elements with each element picked at random with

probability 1/1 from a subset X of the X. The subset X contains 2 elements, and is

generated in the following way: Each member xk of the set X is picked at random with

probability P(xk) from the set X. Thus

P(xk=x) = P(x) for all k (B-3)

Given the subset X p, each of the m successive elements of a code word is generated

by first picking the index k at random with probability 1/2 and then taking xk to be the
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element. Under these circumstances, by direct analogy with the unrestricted case, the

probability of error can be bounded by

P(e IX) < MP' for R < Rcrit

nRM=e

m*y, d(1/2)
P =e

where

P(k)(P(y Ik)) /2
y, d( = In

y

= n X
y

il j f P(Y xi)1/2
i= 1 =1 I

P(y Xk ) 1/2

Thus P(e IX ) < exp[-nE2 , d(R)], where

E2, d(R) = -
m -R
-n- ', d() - R

d f, d\2 - R (B-5)

The average value of Ef, d(R) over all choices of the subset X

Ea, d(R) = - y~ --R

is given by

(B-6)

Now

Yf, d(l) ln gi, d()

where

gf, d( )
j=i

1

2
P(y xi) 1/2 P(y x )1 / 2

Thus

-yd() = -n gf, d() >- - ln gf, d()

P(y lxi)1/2 P(y Ix )1/2

Thus
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E 2 , d(R) > - d In g 2 , d - R (B-7)Cd d gi,\d/

Now

x.x.
J 1

P(xi ) P(x ) P(y Ixi ) /2 P(y xj)1/2

for all i # j, and

P(y Ixi)1/2 P(y Ix j)1/2 = P(x i ) P(Ylx i ) = Z
X. x.

1 1

P(x ) P(y Ixj)

for i = j. There are 2 terms in expression B-7 for which i = j, and there are

terms for which i * j. Thus

gi,d(2) 2y f
P(x i ) P(y jxi) +

X.
1

2(2-1)

y x.1
P(xi) P(Ylxi)1/ 2

Now, since P(xi=x) = P(xj=x) = P(x), we obtain

g, d(2)
P(x) P(y Ix) +

2

P(x)(P(y Ix))1/21

Y

or, from equation B-la,

1 -1 eY(1/2)
gd -+ 2
gi, d1 I

Thus

S d( eY(1/2) e-Y(1/
2 ) + - 1

and

in g, d()= y- + In [ e - (1/z) + - I]

Thus, from inequality B-7 and Eq. B-9, we get

E, d(R) > - - R - n (1/ + - 1

Using Eq. B-2, we have

1
E, d( ) > E(R)-d In

and als d

and also

[ e- .Y(1/2) + - 1]
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- = E(o) - d

Thus

1
E, d(R) E(R) - Inf, d d

e dE(o ) + -1

Q. E. D.

The extension of this proof to include continuous channels for which the function

y( ) = n
y

E P(x) P(y x)1/2 2

exists is straightforward.
J. Ziv
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