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Abstract. Inspired by a challenge during Graph Drawing 2010 ‘Find an
orthogonal drawing whose longest edge is as short as possible’, we inves-
tigate techniques to incorporate this goal into the ‘standard’ topology-
shape-metrics approach at moderate extra computational complexity.
Experiments indicate that this project is worth pursuing.

1 Introduction

In an orthogonal drawing, all nodes lie on a grid and all edge segments are parallel
to the axes. We assume familiarity with the ‘standard’ basic technique to produce
such drawings, the topology-shape-metrics (TSM), that has been introduced in
the 1980s by Batini, Di Battista, Nardelli and Tamassia [3, 2]. Its topology step
yields a planar(ized) embedding, the shape step an orthogonal representation

(OR) and the metric step edge lengths from a compaction procedure.
Optimization goals include the minimization of the area of the drawing, the

number of its bends and the total and maximum edge lengths. A bend-minimal
OR of a four-planar embedding can be computed in time O(n

7

4 log n) [11].
However, even given a fixed OR, the exact solution of the other optimization
problems is NP-hard [16]. Even worse, finding a globally optimal solution cannot
be reduced to the compaction step, but relies on all the three TSM steps. To the
best of our knowledge, currently no such integrated algorithm exists.

Orthogonal compaction is strongly related to VLSI layout problems and
drawings of relational diagrams. Hence, research has mainly been devoted to
improvements of the area and total edge length. Concerning total edge length,
Klau and Mutzel [14] provided an ILP-based exact compaction algorithm. It
runs in polynomial time for restrictive kinds of ORs which are called complete
or uniquely completable. Experimental studies [13, 8] show that heuristics based
on turn-regularity [5] and network flows [7] typically perform best for practical
and hard instances. There also exist heuristics that try to refine an already given
orthogonal drawing like, e.g., [12] and [10]. Focusing on relational diagrams, in [9,
6] heuristics for compacting orthogonal drawings with fixed node sizes are pre-
sented, and in [4] an algorithm that tries to preserve a given initial sketch of a
graph while computing a drawing with few bends.

In this paper we focus on keeping the longest edge as short as possible which
has not yet received much attention in the literature. We restrict our attention
to graphs whose nodes have a maximum degree of four and assume that the
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topology phase has already taken place. Since our ideas rely on the established
flow-based compaction heuristics, Sect. 2 deals with the network flow problems
addressed. In Sect. 3, we propose our new heuristic techniques to improve ORs
and the metric step. Finally, we present an experimental analysis in Sect. 4.

2 Computing Minimum Maximum Flows

Given a network, i.e. a directed graph (V,E) with a source/sink s, t ∈ V , a
capacity function u : E → Z≥0∪{∞} and lower bounds l : E → Z≥0, an s-t-flow
is a function f : E → R≥0 with l(e) ≤ f(e) ≤ u(e) on all edges e ∈ E that has
the flow conservation property, i.e.

∑
e=(v,u)∈E f(e) −

∑
e=(u,v)∈E f(e) = 0 for

all v ∈ V \ {s, t}. We say that f is integral iff f(e) ∈ Z≥0 holds for all e ∈ E.
The Minimum Cost Flow Problem (MinCostFlow) in a network with costs

c : E → Z asks for an s-t-flow that minimizes the overall cost
∑

e∈E c(e)f(e). For
our implementation, we use the (non-polynomial but practically fast) network
simplex algorithm [1]. There is also an algorithm by Garg and Tamassia [11]
that was developed for a similar graph drawing problem.

Given an algorithm for the MinCostFlow problem, we can solve the Integral

Minimum Maximum s-t-Flow Problem with lower bounds (MinMaxFlow): In
a network (V,E, s, t, u) with u ≡ ∞, find an integral s-t-flow such that the
maximum flow on any arc is minimum while the lower bounds are respected.
The integrality constraint is important as a fractional solution can have a lower
value than any integral MinMaxFlow. We can compute an integral MinMaxFlow
by calling a MinCostFlow algorithm in a binary search on the capacities.

Algorithm 1: Computing a MinMaxFlow by binary search.

Input: A network N = (V,E, s, t,∞), lower bounds l : E → Z≥0

Result: An optimal MinMaxFlow on N given l
Solve MinCostFlow on N , l, c ≡ 1 and u ≡ ∞, obtain fM ;
Set fmax = max{fM (e) | e ∈ E}, low = 0 and high = fmax;
while low < high do

mid = ⌊(low + high)/2⌋;
Solve MinCostFlow on N , l, c ≡ 1 and u ≡ mid, obtain fM ;
if fM feasible then high = mid else low = mid+ 1

Solve MinCostFlow on N , l, c ≡ 1 and u ≡ high, obtain and return fM ;

The algorithm runs in time O(Tmcf · log fmax) where Tmcf is the time needed
by the MinCostFlow algorithm. In particular, a polynomial time MinCostFlow
algorithm [1, Chapter 9], yields a polynomial time algorithm for the integral
MinMaxFlow problem. For the correctness of Alg. 1, observe that every Min-
CostFlow is a feasible MinMaxFlow. Thus, the condition that fM is feasible, is
monotonic regarding u on {0, . . . , fmax} and thus, binary search can be applied.

3 Minimizing the Longest Edge

In principle, the TSM approach is not well-suited for minimizing the total or
maximum edge length of a drawing, since these properties depend on all three
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steps; yet, until the last step, there is no notion of edge lengths. However, it is
state-of-the-art and widely used, so in this section we present heuristic strategies
for the shape and metrics steps that can help to keep the longest edge length
small. They can easily be incorporated into TSM frameworks.

3.1 MinMax Flow Compaction in the Metrics Step

Heuristic compaction is typically done in two steps. First, after making the OR
turn-regular and dissecting all faces to rectangular shapes, a constructive heuris-

tic is used to obtain a first feasible drawing. Then improvement heuristics are
repeatedly applied until local optima are reached. As evaluated in [13], flow-based
heuristics are a good choice. Here, constraint graphs that model adjacencies and
visibilities are built for each compaction direction. Their dual graphs can be
interpreted as networks N where each edge corresponds to exactly one edge of
the constraint graph. After a MinCostFlow computation on N with l ≡ 1 and
u ≡ ∞, the edge length can be set to dual edge flows which are of minimum
total value. Instead, we use MinMaxFlow to find edge lengths so that the longest
edge is short. This procedure is referred to by ML from now on. We also consider
a variant CML, in which the length of the longest edge is reduced subject to the
constraint that the total edge length be kept minimum. This requires an easy
adaption of Alg. 1 in which the binary search direction depends on whether the
current total flow exceeds its minimum value.

3.2 Balancing Bends in the Shape Step

The standard bend-minimization (TB) relies on a MinCostFlow problem in a dual
network N . On those edges in N that correspond to primal edges, each flow unit
corresponds to a bend in that primal edge. Minimizing the total number of
bends can be counterproductive for our goal, as a better solution can sometimes
be found by introducing further bends. Nevertheless, experiments [8] showed
that bend-minimal ORs serve at least as a good basis for the compaction phase.

However, we believe that a concentration of bends on single edges has several
drawbacks. First of all, it is not considered to be aesthetically pleasant. Even
more, in many cases, edges with a lot of bends will be long, have complex routes
or block a broad area. Heuristically, a more balanced distribution of bends could
help to escape from local minima. Our results indicate that the shape step has
a large influence on the achievable improvements of the compaction step. We
evaluate this by applying Alg. 1 in two variations: MB minimizes the maximum
number of bends on an edge as far as possible and CMB does the same as long as
the total number of bends does not increase.

4 Results

We experimentally evaluate whether our balancing approach yields drawings
with shorter longest edges. Our code is a modification of the TSM framework
implementation in the Open Graph Drawing Framework (OGDF) [15].
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For a general comparison of the different drawing strategies, we randomly
generate instances1 using rudy [17] and use realistic instances from the rome
library [8]. From these instances, we first remove loops and isolated nodes, then
all nodes with a degree of more than four in the order of their indices. If the
graph becomes disconnected, we select the largest connected component that
contains the smallest node index. Non-planar instances are planarized by the
OGDF code in the topology step. The results are depicted in Tab. 1: On the rudy
instances, minimizing the maximum number of bends per edge (MB) in the shape
step yields the same solutions as the conventional total bend-minimization TB.
However, using the constrained variant CMB in the shape step can lead to large
improvements that are of the metric step approach. Yet, CMB can perform worse
than the conventional TB+TL. Striving for short longest edges in the metric step
(ML) is never worse than total edge length minimization (TL) and can lead to
small improvements. CML performs roughly like ML. We observe the same on the
rome library instances.

Finally, we analyze the influence of a graph’s shape and density on the per-
formance of the different drawing methods. To that end, we use rudy to generate
complete grid graphs with integer edge weights distributed uniformly at random
from 0 to 1002. The density of our instance is controlled by deleting all edges
whose weight is at least ∆ = 65, 70, . . . , 95. Disconnected instances are rejected.
No planarization is needed on these instances. In Tab. 2(a), each entry depicts
how many times a given strategy yielded the best result on one of the 100 in-
stances. Here, none of the bend-minimization strategies is clearly superior, but
for the non-quadratic instances, CMB is slightly better in total. This is in contrast
to the performance of MB which is not better than the conventional TB method.
For the metric step, ML consistently beats the other strategies; only for the very
narrow 40×5 grid not much is gained. When CMB is used, ML has the highest im-
pact for densities from 70% to 85%. Overall, CMB+ML seems to be a good choice
here. A more detailed look at the performance (see Tab. 2(b)) reveals, however,
that CMB+ML still can perform much worse than TL+TB.

5 Conclusion

The experiments show that one can – with little extra computational effort – put
emphasis on short longest edges in the TSM framework. However, in most cases,
concentrating on the metric step is not enough. For significant progress one has
to integrate the shape step into the optimization process. In some cases, building
the OR with the CMB strategy is a good idea; in other cases, it can lead to bad
results. Thus, it is still unclear how to find the best OR, but the experiments
show that if the right OR is found, one can expect drastic improvements.

1 We call rudy -rnd graph i (200 / (i-1)) (4711 + i) for i = 175, . . . , 200. Each
call yields an instance with i initial nodes that have average degree four.

2 We call rudy -grid 2D height width -random 0 100 (seed+i) for i = 1, . . . , 100
with an initial seed of 215986 (#inhabitants of Eindhoven according to Wikipedia).



Towards shortest longest edges in orthogonal graph drawing 5

TB CMB MB

i TL CML ML TL CML ML TL CML ML

175 29 28 28 29 28 28 29 28 28
176 12 12 12 12 12 12 12 12 12
177 21 20 20 24 22 22 21 20 20
178 12 12 12 11 11 11 12 12 12
179 33 33 31 27 27 27 33 33 31
180 22 16 16 18 18 18 22 16 16
181 16 16 15 15 15 15 16 16 15
182 16 16 16 16 16 16 16 16 16
183 21 21 15 18 18 15 21 21 15
184 26 26 26 27 27 27 26 26 26
185 20 20 19 20 20 19 20 20 19
186 8 8 8 8 8 8 8 8 8
187 19 19 13 24 24 24 19 19 13
188 23 23 23 24 24 24 23 23 23
189 48 49 49 49 49 49 48 49 49
190 28 28 28 32 32 32 28 28 28
191 17 17 17 21 21 21 17 17 17
192 28 28 28 24 24 24 28 28 28
193 16 16 16 6 6 6 16 16 16
194 39 39 39 30 26 26 39 39 39
195 10 10 10 17 17 17 10 10 10
196 34 34 34 30 30 30 34 34 34
197 29 29 29 25 25 25 29 29 29
198 64 64 64 35 30 30 64 64 64
199 4 4 4 4 4 4 4 4 4
200 27 27 27 24 24 24 27 27 27

(a) Random rudy graphs.

TB CMB MB

TL CML ML TL CML ML TL CML ML

ug10.10 6 6 6 6 6 6 6 6 6
ug20.10 2 2 2 2 2 2 2 2 2
ug30.10 8 8 8 4 4 4 8 8 8
ug40.10 4 4 4 2 2 2 4 4 4
ug50.10 4 4 4 2 2 2 4 4 4
ug10.30 12 12 11 7 7 7 12 12 11
ug20.30 7 7 7 7 7 7 7 7 7
ug30.30 12 12 12 12 12 12 12 12 12
ug40.30 10 10 10 8 8 8 10 10 10
ug50.30 6 6 6 4 4 4 6 6 6
ug10.50 18 18 18 13 11 12 18 18 18
ug20.50 10 10 10 10 10 10 10 10 10
ug30.50 20 20 20 15 15 15 20 20 20
ug40.50 10 10 10 9 9 9 10 10 10
ug50.50 20 20 20 10 10 10 20 20 20
ug20.70 16 16 16 17 17 17 16 16 16
ug30.70 38 38 38 38 38 38 38 38 38
ug40.70 31 31 31 33 33 33 31 31 31
ug50.70 16 16 16 17 17 17 16 16 16
ug60.70 38 38 38 24 23 23 38 38 38
ug10.90 23 23 23 23 23 23 23 23 23
ug20.90 25 25 25 28 28 28 25 25 25
ug30.90 45 45 45 45 45 45 45 45 45
ug40.90 25 25 25 21 21 21 25 25 25
ug50.90 22 22 22 19 16 16 22 22 22
(b) 10 to 90 node graphs from the rome-lib.

Table 1. Length of the longest edge in the computed drawing.

#con. TB CMB MB

∆ inst. TL CML ML TL CML ML TL CML ML

14 × 14 grid, seed 215986
65 21 10 13 15 6 8 12 10 13 15
70 46 14 14 25 14 18 31 14 14 25
75 74 24 29 46 18 25 45 24 29 46
80 87 31 35 57 28 35 54 31 35 57
85 95 46 55 67 42 49 66 46 55 67
90 96 63 66 70 66 66 73 63 66 70
95 100 71 74 79 77 79 81 71 74 79

20 × 10 grid, seed 216188
65 14 3 4 8 1 4 8 3 4 8
70 35 11 16 22 15 16 23 11 16 22
75 66 21 26 37 28 33 45 21 26 37
80 83 30 38 51 28 41 59 30 38 51
85 96 45 51 65 54 61 74 45 51 65
90 98 61 65 71 70 73 77 61 65 71
95 100 71 73 76 61 65 70 71 73 76

40 × 5 grid, seed 216289
65 8 6 6 6 6 6 7 6 6 6
70 27 20 21 22 23 24 24 20 21 22
75 57 39 39 40 50 52 53 39 39 40
80 79 62 63 66 59 60 62 62 63 66
85 93 70 71 76 75 76 78 70 71 76
90 99 61 65 69 71 71 75 61 65 69
95 100 73 75 76 70 73 75 73 75 76

(a) Number of times that a given strategy yields
best results. Larger values are better. The third
column gives the total number of connected in-
stances (out of 100). For ∆ ≤ 60, only very few

instances are connected.

TB CMB MB

i TL CML ML TL CML ML TL CML ML

4 26 26 23 18 18 14 26 26 23
6 30 30 30 18 14 14 30 30 30
8 17 17 17 23 23 23 17 17 17

12 28 28 28 34 31 31 28 28 28
14 25 25 13 32 32 32 25 25 13
17 23 23 23 23 23 23 23 23 23
20 31 31 31 31 31 31 31 31 31
21 24 24 13 28 28 28 24 24 13
23 19 19 19 19 19 10 19 19 19
24 27 27 27 27 27 27 27 27 27
25 17 17 11 17 17 11 17 17 11
26 34 34 34 30 30 29 34 34 34
27 16 16 10 37 37 37 16 16 10
29 25 25 23 20 20 12 25 25 23
31 21 21 21 11 11 11 21 21 21
32 17 17 17 16 16 8 17 17 17
33 31 31 31 13 13 13 31 31 31
34 33 33 33 12 12 12 33 33 33
38 38 38 38 24 24 16 38 38 38
39 17 13 13 16 16 9 17 13 13
42 13 13 13 17 12 12 13 13 13
43 25 25 16 14 13 13 25 25 16
44 34 34 34 32 32 32 34 34 34
45 9 9 9 9 9 9 9 9 9

(b) Length of the longest edge. Smaller val-
ues are better. First 24 connected instances
from the 14x14 grid, ∆ = 70. The new
strategies work especially well on this set.

Table 2. Results on grid graphs of different shapes and densities.
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Fig. 1. Example graph compacted using TB with TL (left) and ML (right).
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