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A. PICTURE PROCESSING

1. A MEDIUM-SPEED MEDIUM-ACCURACY MEDIUM-COST

ANALOG -TO-DIGITAL CONVERTER

An analog-to-digital converter has been constructed. Some of the performance spec-

ifications are listed below. Anyone who is interested may obtain a copy of the circuit

diagrams.

a. General Specifications

Input: 0 to -10 volts

Output: 8 bits, natural binary code, parallel output

Conversion time: 45 4sec

b. General Description

A conversion is initiated by an external pulse. The intervals between these pulses

must be greater than 45 isec. The conversion is done on a bit-by-bit basis.

c. Construction Details

Most of the circuitry is built with medium-speed switching transistors and general-

purpose diodes. The internal voltages are derived from regulated +34-volt and -25-volt

power supplies.

The circuit takes up five plug-in cards. The estimated time for wiring is approxi-

mately one man-week.

,This research was supported in part by Purchase Order DDL B-00368 with Lincoln

Laboratory, a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U. S. Army, Navy, and Air Force under Air Force Contract
AF19(604)-7400; and in part by the National Institutes of Health (Grant MH-04737-03),
and the National Science Foundation (Grant G-16526).
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An approximate list of components includes: 52 pnp switching transistors, 46

general-purpose diodes, 24 special diodes and transistors, 150 resistors (1/2 watt 5 per

cent), 18 precision resistors, 20 power resistors, 5 miniature variable resistors,

61 miscellaneous capacitors, 5 electrolytic capacitors, and 7 Zener diodes.

If the components are ordered in reasonable quantities, the total cost would be less

than $200.

O. J. Tretiak

2. PICTURE RECORDING AND REPRODUCING EQUIPMENT

The scanner for recording and playing back pictures has been improved on by the

addition of a feedback circuit to control the light output of the cathode-ray tube. The

light intensity is sensed by a multiplier phototube and compared with the input signal.

The error signal is integrated over the duration of a signal pulse, amplified, and fed

to the cathode-ray tube.

This arrangement serves two purposes: (a) keeping the light output uniform (for

constant signal) over the entire surface of the tube, that is, to eliminate phosphor noise;

and (b) during playback, making the light output a linear function of the input signal

(which is important for color reproduction by linear addition of primary colors).

The effectiveness of the circuit for purpose (a) is demonstrated by the measurement

of a light-intensity variation in the ratio 4:1 for a simulated phosphor response variation

in the ratio 45:1.

The linearity of the output is true within 10 per cent in a large-to-small signal ampli-
tude ratio of approximately 100:1 (which is the useful dynamic range of a typical trans-

parency) and should be compared with the highly exponential characteristic of the

cathode-ray tube alone.

U. F. Gronemann

3. IMAGE CORRECTION-TRANSMISSION EXPERIMENTS

Usually only small areas of a motion picture change significantly from frame to

frame. An obvious exception occurs if the camera is moving relative to a fixed back-

ground. Since this is true, a possible way of permitting the reconstruction of a sequence

of moving picture frames is the transmission of information concerning the parts of the
picture which change significantly.

To determine how such a system would perform, a program was written for the

TX-2 computer (located at Lincoln Laboratory, M. I. T.) to simulate the transmission

process. The input data were scanned from 35-mm film and recorded on digital com-

puter tape. On this tape pictures consisting of 128 X 128 sample points, each having

one of 256 possible brightness levels, were recorded.
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(a) (b)
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(e) (f)

Fig. XV-1. Picture build-up examples.
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(a) (b)

(c) (d)

(e) (f)

Fig. XV-2. Still pictures of scene transitions.
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The simulations were performed under the assumption of error-free transmission

and sufficient buffer storage at the transmitter and receiver to allow a signal match, as

well as storage of complete pictures as required. A description of the operation of the

transmission system follows.

The transmitter retains a copy of the picture that the receiver has in its memory;

when confronted with the new picture data that are to be transmitted, the transmitter

performs calculations to determine the N points that have the N largest brightness dif-

ference in the new pictures and the copy of the receiver picture. The transmitter then

proceeds to correct the brightness values of these N points; also, each time a point is

corrected, the correction value is averaged into its surround by means of a decaying

interpolation function. Since the interpolation process usually changes the value of the

brightness differences, these differences are recalculated each time that a correction

is sent to prevent sending unnecessary corrections. The process of correcting points

is carried out in an interlaced pattern that requires 4 passes to check every point in the

picture. If the process completes the 4 passes without having sent all N corrections,

it starts over with a lower difference threshold so that the full quota of corrections may

be sent.

Since there is a constant number of corrections sent for each frame, there is no

queing problem when a change of scene occurs. In Fig. XV-1 is shown an example of

a picture build-up from a blank screen with the value N = 1024 used, which is equal to

1/16 of the points in the picture. The first four pictures are the frames representing

the 4 frames after a blank screen; the fifth and sixth pictures are representative of the

quality achieved after approximately 32 frame times. Figure XV-2 shows an example

of a scene transition with the same number of corrections per frame. The six frames

represent 3/8 second when viewed at the 16-frame/second rate. Since information con-

cerning the location of these points, as well as the brightness values, must be sent, the

reduction ratios are not 16:1 but approximately 6:1. This calculation is based on the

upper limit of information required if all corrections are sent independently.

We plan to extend this work, and to introduce certain topological constraints on the

interpolation process.

J. E. Cunningham

B. DISTANCE PROPERTIES OF TREE CODES

In this report we show that for any two positive integers r and s such that r divides

s there exists a "good" tree code in the Galois field of order pS with pr branches per

node. The code is good in the sense that an appropriately defined minimum distance

criterion may be achieved which is numerically identical to that presented by Peterson 1

for the general parity-check code. This result is presented in the form of a theorem.
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In the course of the proof, several lemmas are established which in themselves describe

properties of tree codes which are thought to be of interest. Finally, it is shown that a

"good" tree code may be transformed into a canonic form without destroying its distance

properties. We shall first develop suitable notation.

Consider the n-tuple (gl' .  gn) whose coordinate entries are chosen from a Galois

field of order pS (G. F.[pS]), where p is a prime and s is a positive integer. Suppose,

also, that gl t 0 and that n = kn 0 , where k and no are positive integers. We are inter-

ested in the set of n-tuples generated by certain linear combinations of the following

basic set of n-tuples.

g 1 g 2 ... gn gn +1 gn +2 Sg(k- l)no + 1 . gkn
0 0

0 0 ... O g 1  g 2

0 0 ... 0 0 0

0 0 ... 0 0 0

... 0 g

... 0

... g(k-2)no
0

0 ... 0 gl

It is sometimes convenient to represent n-tuples in functional form.

represent the n-tuple (gl ... ' gn) by the function g(t) defined as

g(t) = gi
0

"'. gn

Thus we shall

if t = i for i = 1, 2 ... n

all other t

Correspondingly, the array of n-tuples presented above may, at least for t = 1, ... , n,

be represented by the set of functions

g(t), g(t-n o ), . . . , g(t-(k-1)n ).0 0

Consider the set of functions (n-tuples) of the form

p(t) = xog(t) + xlg(t-n o ) + . . . + xklg(t-(k-1)no),

where the coefficients of the functions g(t-in ) for i = 0, ... , k-1 are chosen from a

subset E of the Galois field. If E contains m elements, there are m k such distinct

functions, for the condition g(1) * 0 implies that the set of functions g(t-in ) i = 0, ...

k-l is linearly independent. 3

We shall refer to the set of functions generated this way as the tree code or convo-

lutional code generated by g(t) and E. The name "tree code" derives from the fact that

the elements (functions, code words, paths) of the code can be represented diagrammat-

ically in the form of a tree. This is illustrated in Fig. XV-3 for a generator of length 6
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Fig. XV-3. (a) Generator function g(t).
(b) Tree code generated by g(t) and

the set of field elements 1, 2, 3.
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with entries drawn from the Galois field of order 7. In this example it is assumed also

that n = 2, and that the set E consists of the field elements 1, 2, and 3.

Returning to the general case, we denote the m elements of E as e o , el' ... em-l'
and consider the subsets of functions (paths):

S 0 p(t) p(t) = e g(t) + xig(t-ino)
i=-1

Sm- 1 = p(t) p(t) = em-1 g(t) + xig(t-ino
i=1

where the x. vary over all possible values of E.

In effect, we have partitioned the totality of paths into subsets with the same initial

prefix. (See, for example, the path sets S 1 , S 2 , and S 3 in Fig. XV-3b.) Clearly, each
k-1

subset S i contains m paths.

We define the distance between any pair of distinct path sets Si , Sj as

D(S i , S.) = min d(p(t), h(t)),
1 p(t) E S.1

h(t) E S.
J

where d(p(t), h(t)) is the conventional Hamming metric,

n

d(p(t), h(t)) = p(i)-h(i)

i=1

Here, for any element x in the Galois field

Ix = 1 if x 0

I x =0 if x = 0.

We define the weight of a vector to be equal to the distance of the vector from the

all-zero vector.

If we let

9 = min D(S i , S),
i, j
i#j

we can now state the theorem, which is the main result of this report.

THEOREM: If E is a subfield of the Galois field of order q, then there

exists a generated tree code for which 9 exceeds A, where A is the largest
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integer satisfying the inequality

A-2 n-1
n- 1 (q)j qS(q- 1 k-1

j= m

REMARK 1: For q = m, this condition is identical to the one presented by Peterson

for the general parity-check code.1

PROOF: We shall prove the theorem in a series of lemmas that serve as convenient

guideposts to the main thread of the argument. After the proof, we shall discuss the

effect of weakening the hypothesis by requiring only that E be an additive subgroup of

the Galois field and not necessarily a subfield. This is of interest, since the require-

ment that E be a subfield is somewhat restrictive. The only subfields of a Galois field
m r 4

of order pm are of order pr, where r divides m.

LEMMA 1: D(S i , Sj), i # j, is independent of the choice of i and j.

By definition,

D(S i , S) = min d(p(t), h(t)).
p(t) E S.

1

h(t) E S.
J

But functions belonging to S. and S. must have respectively the forms

k-1

eig(t) + x1g(t-n o )

1=1

and

k-1

ejg(t) + ylg(t-lno),

1=1

in which each of the 2(k-1) coefficients x l and yl is chosen from E. Thus

k-1

D(Si , S.) = miin (ei-e ) g(v) + (xl-y 1 ) g(v-lno )  .

Clearly, however, since xl and yl are chosen from E, which is a subfield and there -

fore an additive group, we have

D(S, S) = min (ei-e ) g(v) + x1 g(v-lno )
xl v= v 1= 1
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-1
Furthermore, (e.-e.) 0 implies the existence of a multiplicative inverse (e.-e)-

and thus

D(S i , S) = min g(v) + (e )-1 x1g(v-no

x v-- 1 1= 1

But E, a field, implies that

(ei-e.) x = {x}xE

Hence

D(S i , S.) = mmra g(v) + x 1g(v-lno) .
{xl} v=1 1=1

The right-hand side is independent of the choice of i and j, i f j, and thus Lemma 1 is

proved.

Since E is a field, it must contain a zero element. It is notationally convenient to

assume that, in fact, eo = 0 and, correspondingly, So is the path set containing the all-

zero n-tuple. We shall refer to S as the zero-path set. Adopting this notation, we note

that the reasoning used to establish Lemma 1 proves almost directly the following

lemma.

LEMMA 2: The quantity 9. is equal numerically to the weight of the minimum-

weight path in the code which does not belong to S .

LEMMA 3: The number of distinct n-tuples that, in conjunction with the subfield E,
k-i

generate the same code is exactly equal to (m-1)m

Assume a code generated by the function g(t). By definition, g(1) # 0. The number

of paths in this code which satisfy the constraint p(l) # 0 is equal to (m-1) k - l  Any

such path, however, may be used to generate the same code. That is,

k-1 k-1

x.iP(t-in ) = xig(t-in
° )

i-0 i-0

I x.EE =0 x. E

In words, each and every one of the km n-tuples that may be expressed as a linear

combination of g(t) and its translates may also be expressed as a linear combination of

p(t) and its translates. We have thus established the fact that the number of distinct

n-tuples that generate the same code is greater than or equal to (m-1)m k - 1

However, any code generator must itself belong to the code, and, furthermore, can-

not belong to So . This establishes the reverse inequality, and hence Lemma 3 is proved.
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We shall say for the purposes of this report that two tree codes are essentially dis-

tinct if the only paths that they have in common belong to their respective zero path sets.

We now formulate

LEMMA 4: Two generated tree codes are either essentially distinct or identical.

Assume two generated tree codes Cl and C2 that are not essentially distinct. Then

there exists a path p(t) with nonzero first coordinate belonging to both C 1 and C 2 . But

such a path can serve as a generator both for C 1 and C 2 . It follows, therefore, that C 1

must be identical to C 2 .

LEMMA 5: The number of essentially distinct tree codes that can be generated with

(q-l)qn - 1

generators of length n in a Galois field of order q is exactly equal to k-i where
(m-l)m

m is the order of the subfield E.
s r

Initially, we note that if q = pS, then E is a subfield only if m = p , where r divides

(q- )qn-1
s. This ensures that, in fact, k-1 is a positive integer.

(m-1)m
The number of distinct code vectors in G. F.[q] with a nonzero first coordinate is

equal to (q-1)qn-1 Consider the code, say C, which is generated by one such vector.

In C there will be a total of (m-i)mk - 1 vectors with nonzero first coordinates. If
1

(q-1)q n - 1 - (m-1)m k - 1 > 0, there exists an n-tuple with a nonzero first coordinate that

is not in C 1. Consequently, we can generate a second code C 2 that is, by Lemma 4,

essentially distinct from C 1. By proceeding in this fashion, it is clear that the number

(q-1)q
n -

of essentially distinct codes that we can generate is exactly equal to k-1
(m-l)m

The final argument in the proof of the theorem is basically a comparison between the

number of low-weight n-tuples with a nonzero first entry and the number of essentially

distinct codes. Lemma 2 implies that 9, the minimum distance between any pair of

distinct path sets in a code, is equal to the weight of the minimum-weight path in the

code which does not belong to the zero subset. The total number of n-tuples of weight

less than or equal to A-1, which have a nonzero first coordinate, is

A-2

(q-1) n 1j (q-1)J.

j=0

In each code there will be at least m-1 code words of the same weight. Thus the total

number of essentially distinct codes that can contain a path (in a nonzero subset) of

weight less than A is, at most,

q-1 (q-1).
j=0
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Consequently, as long as the total number of essentially distinct codes exceeds this num-

ber, there will always exist a code with -9 >A. The theorem now follows from

Lemma 5.

The proof of the theorem depends essentially on Lemma 4, which guarantees that

two codes cannot partially overlap in a nontrivial way. More precisely, assume a code

C l and an n-tuple p(t) with p(l) f 0 with the property that p(t) does not belong to C 1.
Then Lemma 4 implies that the code generated by p(t) is essentially distinct from C 1.
This is no longer true necessarily if E is only restricted to be an additive subgroup of

the Galois field.

Consider, for example,5 the Galois field of order 16 which can be represented as

the field of polynomials over G. F.[2] with multiplication modulo the polynomial x4 +x+ 1.

The four elements 1, x, 1 + x, 0 form an additive subgroup of G. F.[16]. Assume a gen-

erator whose first entry is the Galois-field element 1 + x + x3 . The corresponding first

entries in the four branches stemming from the first node will be

1(1+x+x 3) 1 + x + x3

x(1+x+x 3 ) = 1 + x2

(l+x)(l+x+x3 ) = x + x2 + x3

0(1+x+x 3 ) = 0.

Now consider a second generator whose first entry is the element x2 + x3 . Such a

generator clearly cannot belong to the code generated by the first generator. Yet

23 3x(x +x) = 1 + x + x

which coincides with one of the first-branch entries of the first code. It follows that by

appropriate juggling it is possible to construct a pair of generators gl(t) and g2 (t) so
that g2 (t) does not belong to the code generated by gl(t), which we designate C 1 . But

the code generated by g2 (t), C2 ' is still not essentially distinct from C 1. That is, there

exists a path p(t) with p(1) * 0 which is common to both codes. Thus Lemma 4 is no

longer true if the assumption that E is a subfield is replaced by the weaker assumption

that E is an additive subgroup. Whether or not the theorem is true under these weaker

conditions is not yet resolved - at least to the author's knowledge. In this direction we

might point out that Lemma 2 can be shown to be true, although Lemma 1 is false, under

the assumption that E is an additive subgroup.

We have shown that for any two positive integers r and s such that r divides s

there exists a generator for a tree code in the Galois field of order pS with pr branches

per node, which is good in the sense that an appropriately defined minimum distance

criterion can be satisfied. Furthermore, the proof is constructive in the sense that by
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simply choosing generators and testing the resulting codes one is guaranteed that ulti-

mately a good code will be found. 6 Let us suppose that such a code has, in fact, been

found with generator function g(t).

REMARK 2: (a) The code can be implemented by using only modulo p addition and

multiplic ation.

(b) From such a code one can derive a code having the same distance

properties which is in canonic form (to be described below).

We proceed to discuss Remark 2a.

A field of order pr is a vector space of dimension r over the prime field of order p.

We thus can select r elements from E, say el, . . ., er such that every element in E

may be written in the form

kle I +... + Xre r

for some choice of X l, ... , Xr where Xl , ... , Xr are elements in G. F.[p].

Consider the multiples of the generator function elg(t), . . . , erg(t) (where multipli-

cation is performed according to the rules of G. F.[pS]), and designate the corresponding

products gl(t) ..... gr(t).

With each such function gl(t) ..... gr(t) we can associate an n-tuple

all ... aln

a a
rl a rn

where the a.. are elements of G. F.[pS].

The Galois field of order ps is, however, a vector space of dimension s over the

prime field of order p. Correspondingly, we, in fact, can associate with each function

gl(t) ... gr(t) an sn-tuple of prime-field elements

b ... b
11 l(sn)

b b

brl ... br(sn)

where the b.. are elements of G. F.[p].

Correspondingly, letting gi(t) denote the expansion of gi(t) in prime-field elements,

we can describe our code as the set of sn-tuples of the form

k-1 k-i k-i

) lig 1(t-isno) + 7 2i9 2 (t-isno0 + + X rigr(t-isno),

i=O i=O i=O
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where the k.. are elements of the prime field.

In this formulation all addition and multiplication is done modulo p. Thus, for

example,

ll(billbl2..... bl(sn )) := ( 11 b 11 , 1 1 b l 2 .  ' llbl(sn))'

where each entry on the right is interpreted modulo p.

We thus have shown that a code corresponding to a single generator function g(t) and

the subfield E of order pr may be viewed as a code corresponding to r generator func-

tions gl(t), ..... gr(t) and the prime field of order p. We turn now to Remark 2b.

We are concerned here with showing that it is possible to transform a code that is

known to have good distance properties into canonic form and still preserve those dis-

tance properties.

We suppose that the n-tuple corresponding to g(t) has been transformed, as discussed

in Remark 2a, into a set of r sn-tuples with entries in G. F.[p]. We again designate

these sn-tuples by ~l(t) ..... g(t).

Clearly, we do not alter the code generated by l(t) ..... r(t) and the prime field
G. F. [p] by

(1) replacing any generator A.(t) by X i(t) if X is a nonzero element of G. F.[p];
(2) replacing "i(t) by i(t) g+ kj(t), where X is any element of G. F.[p];
(3) interchanging 9i(t) with gj(t) for any i, j 1 < i, j < r.

These operations are analagous to the "elementary row operations" of matrix theory

by means of which it is possible to reduce any matrix into a row-reduced echelon form

without affecting the space spanned by the matrix.7

If, in addition to these three operations, we allow column permutations of the gen-

Aerator array, then it is possible to derive from the original set of generators gl(t)' . . .
gr(t) a new set of generators, say Pl(t) ..... P (t), which have the forms

010 ... 0 c 2 1  ... cI 1 C (sn-r)

000 ... 1 crl . cr(sn-r)

respectively, where the cij belong to the prime field of order p.

In general, column permutations of the generator array will alter the code. Thus
the code generated by l(t) ..... r (t) may differ from the code generated by Pl(t)

Pr(t). However, if the set of allowable column permutations is suitably restricted, the
two codes will have the same metric structure.

It is important to keep in mind here that we are still measuring distance according
to the rules of the Galois field of order p , even though all computations are carried out
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modulo p. Thus to calculate the Hamming distance between two vectors it is necessary

to compare their entries in successive blocks of length s. Each such block comparison

can contribute only 1 to the cumulative Hamming distance between the two vectors,

regardless of the actual number of discrepancies in the block which are in excess of 1.

Consider, for example, the two code vectors

d i, d 2 . . .. . dsn

fl' f ..... fsn

There are n blocks of length s to be compared. The first comparison involves a

check of

d I , .... d s

fi, f

If there is disagreement in one or more places, these two blocks are distance 1

apart.

Compare, next, the s entries

ds+i ..... d 2 sfs+1' "" d2s

fs+l1 .... fZs

Again, disagreement in one or more places adds 1 to the cumulative Hamming dis-

tance between the two code vectors. Clearly, the maximum distance between the two

code vectors is equal to n.

It should be clear that any two columns that appear in the same block of length s can

be permuted without changing the distance between the two code words.

Thus, for example, the distance between the vectors

dl , d2 , ... d s , ds+ 1  .. , dsn

fl' f2 ..... fs' fs+l ..... fsn

is equal to the distance between the two vectors

ds , d 2 , ... d ds 1 , d , d sn

fs' 2 ..... fs-' fl' s+l' ... ' fsn"

This is not true if columns from distinct blocks are interchanged. Thus, in general,

the distance between the last two vectors given above is not equal to the distance between

the vectors
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ds+ 1  d2 . ... .  ds', d I, ds+ 2 .. . dsn

fs+1' 2' ..... fs' ' s+2' ... ' sn

Consider now the first s entries of the generator functions gl(t), ..... gr(t), namely,

bl ..... bls

b21, ... , b2s

brl, ..... brs

In accordance with this discussion, we can permute the columns of this matrix of

entries without affecting the metric structure of the portion of the code consisting of

elements of the form

lgl (t) + ... + Xrgr(t),

where the k. are chosen from the prime field of order p.1
The total code, however, involves translates of the generator functions. Thus the

elements that appear in the first block of generator entries, in the process of forming

the code, will interact with elements that appear in blocks numbered no+l1, 2no+l ...

(k-1)n +l, and, in fact, only with these blocks. It follows that the metric structure of

the code will be preserved if any permutations of the columns of block 1 are paralleled

in these blocks. Thus if the first column of block 1 is interchanged with the third column

of block 1, then the first column of block n +1 should be interchanged with the third col-

umn of block no+1, and similarly for blocks numbered 2no+1, ... , (k-1)no+1.

The manipulations discussed above permit us to derive the set of generators pl(t),

.. (t) whose first r entries are in diagonal form, as shown earlier.

Finally, we note that if hl(t), ..... hr(t) are any paths belonging to the code subsets

containing Pl(t), ..... Pr(t), respectively, then the code generated by hl(t), ..... hr(t)8
is identical to the code generated by Pl(t), . ' Pr(t). Using this fact, we can extract

a set of generators for the code which are in canonic form. That is to say, the genera-

tors may be written in the form

sn sn sn

1 0 ... 0 x ... x 0 ... 0 x ... x 0 ... 0 x ... x ...

O 1 ... 0 x ... x0 ... 0 x ... x0 ... 0 x ... x

00 1... x ... x ... xx ... x

r r r
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where the symbol x denotes some entry from the prime field. (Note that entries in dif-

ferent positions will, in general, have different values.)

We conclude this report with an example designed to illustrate Remark 2. We con-

sider a generator with entries drawn from G. F.[16] (see Peterson 5 ) and assume that

n = 6, n = 2, and m = 4. As noted earlier, G. F.[16] may be represented as the field

of polynomials over G. F.[2] with multiplication performed modulo the polynomial 1 + x+
4 2 2

x The subfield E of order 4 consists of the elements 1, x+x 2 , 1 +x+x , 0. Clearly

E, considered a vector space of dimension 2 over the binary field, is spanned by the
2

two basis vectors 1 and x + x2. Let us assume a generator function g(t) of the form

3 2 3 2 3 3 2 3 2
1+x+x , x+x1 x +x +x , x+x , x +x, l+x

Consider the pair of functions (1)g(t) and (x+x2)g(t):

3 2 3 2 3 3 2 3 2
l+x+x , x+x +x +x + x x+x , x +x, 1+x

2 3 3 3 2 3 2 3
1+x+x +x , x, x, +x , x+x + x, 1+x + x

Denoting these two 6-tuples by gl(t) and g 2 (t), respectively, we may write the cor-

responding 24-tuples gl(t) and g2(t) as

110101111011010100111010

111101000001100101111011.

Replacing g2(t) by gl(t) + 2 (t), we get the pair

110101111011010100111010

001000111010110001000001.

We can put the first two entries of this array into diagonal form by interchanging

columns 2 and 3. Correspondingly, in order to preserve the distance properties of the

tree code generated by these two vectors, we must further interchange column 10 with

11 and column 18 with column 19. We denote the resulting pair of vectors

101101111101010101011010

010000111100110000100001

as Pl(t) and p 2 (t), respectively.

The code generated by pl(t) and p 2 (t) consists of the 2 vectors

2 2

XliPl(t-i8) + k2ip 2 (t-i8),

i=0 i=0

where the k.. are elements of the binary field.
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The canonic generators for this code are the two vectors

hi(t) = Pl(t) + Pl(t-8) + p 2 (t-8) + p2 (t-16)

h2 (t) = P 2 (t) + Pl(t-8) + p 2 (t-8).

Note that h 1 (t) belongs to the path subset containing pl(t), and h2 (t) belongs to the
path subset containing p 2 (t). Computing h l (t) and h 2 (t) explicitly, we find that they are
equal to the pair of 24-tuples

101101110010000100000000

010000110011100000111000,

respectively.

The important thing to note about this array is that it is of the form

sn sn sn
O o o

r 1 0 x ... x0 0 x ... x 0 0 x ... x

0 1 x ... x0 0 x ... x 0 0 x ... x

r r r

The author wishes to acknowledge his indebtedness to Professor John M. Wozencraft
for stimulating this research. The basic comparison of the number of low-weight code
words and essentially distinct codes, which was used to prove the theorem, is a gener-
alization of his argument for binary fields. 9 The observation that codes may be trans-
formed into canonic form without destroying their metric structure is also due to him.

H. Dym
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C. MOMENTS OF THE SEQUENTIAL DECODING COMPUTATION

Recent investigations of a sequential decoding algorithml for the memoryless binary

erasure channel provide results with implications for the behavior of sequential decoding

on the general, memoryless channel.

The behavior of the moments of the sequential decoding computation as a function of

rate on the erasure channel has been determined. The n t h moment grows exponentially

with constraint length for rates R > R n , n = 1, 2, 3, .... The rates (Rn} form a mono-

tonically decreasing sequence with an interesting geometrical interpretation. Plot the

exponent, E(R), on the "sphere-packed" probability of error versus R (see Fig. XV-4).

E (R)

n

Rn  c R

Fig. XV-4. Rate construction.

Draw a line with slope equal to -n tangent to E(R). Then the rate-axis intercept of this

straight line is the rate R n . This is a very natural extension of the geometrical inter-

pretation of Rcomp R . Because the rates (Rn} have such a natural interpretation and

because sequential decoding on the erasure channel exhibits the fundamental features

that are exhibited on more general channels, we are inclined to believe that these results

also apply to the general, memoryless channel. Preliminary investigations indicate that

this is true.

The behavior of the rates (Rn} implies something about the character of the
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distribution of computation, PR[xN]. In particular, if we assume that the fractional

rates can be obtained by the same construction technique as the integral rates, then the

Pareto distribution

PR[x >N] = , N large and P such that R = R

provides the correct moment behavior. This problem, as well as those mentioned ear-

lier, is still under study.

J. E. Savage
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