52 research outputs found

    Charge Fluctuations on Membrane Surfaces in Water

    Full text link
    We generalize the predictions for attractions between over-all neutral surfaces induced by charge fluctuations/correlations to non-uniform systems that include dielectric discontinuities, as is the case for mixed charged lipid membranes in an aqueous solution. We show that the induced interactions depend in a non-trivial way on the dielectric constants of membrane and water and show different scaling with distance depending on these properties. The generality of the calculations also allows us to predict under which dielectric conditions the interaction will change sign and become repulsive

    V2368 Oph: An eclipsing and double-lined spectroscopic binary used as a photometric comparison star for U Oph

    Full text link
    The A-type star HR 6412 = V2368 Oph was used by several investigators as a photometric comparison star for the known eclipsing binary U Oph but was found to be variable by three independent groups, including us. By analysing series of new spectral and photometric observations and a critical compilation of available radial velocities, we were able to find the correct period of light and radial-velocity variations and demonstrate that the object is an eclipsing and double-lined spectroscopic binary moving in a highly eccentric orbit. We derived a linear ephemeris T min.I = HJD (2454294.67 +/- 0.01) + (38.32712 +/- 0.00004)d x E and estimated preliminary basic physical properties of the binary. The dereddened UBV magnitudes and effective temperatures of the primary and secondary, based on our light- and velocity-curve solutions, led to distance estimates that agree with the Hipparcos distance within the errors. We find that the mass ratio must be close to one, but the limited number and wavelength range of our current spectra does not allow a truly precise determination of the binary masses. Nevertheless, our results show convincingly that both binary components are evolved away from the main sequence, which makes this system astrophysically very important. There are only a few similarly evolved A-type stars among known eclipsing binaries. Future systematic observations and careful analyses can provide very stringent tests for the stellar evolutionary theory.Comment: 10 pages, 7 figs, in press 2011 A&

    Equilibration and Dynamic Phase Transitions of a Driven Vortex Lattice

    Full text link
    We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2_2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.Comment: 5 pages, 4 figure

    Caby Photometry of the Hyades: Comparisons to the Field Stars

    Full text link
    Intermediate-band photometry of the Hyades cluster on the Caby system is presented for dwarf stars ranging from spectral type A through late K. A mean hk, b-y relation is constructed using only single stars without anomalous atmospheres and compared to the field stars of the solar neighborhood. For the F dwarfs, the Hyades relation defines an approximate LOWER bound in the two-color diagram, consistent with an [Fe/H] between +0.10 and +0.15. These index-color diagrams follow the common convention of presenting stars with highest abundance at the bottom of the plot although the index values for the metal-rich stars are numerically larger. For field F dwarfs in the range [Fe/H] between +0.4 and -1.0, [Fe/H] = -5.6 delta-hk + 0.125, with no evidence for a color dependence in the slope. For the G and K dwarfs, the Hyades mean relation crosses the field star distribution in the two-color diagram, defining an approximate UPPER bound for the local disk stars. Stars found above the Hyades stars fall in at least one of three categories: [Fe/H] below -0.7, [Fe/H] above that of the Hyades, or chromospherically active. It is concluded that, contrary to the predictions of model atmospheres, the hk index for cool dwarfs at a given color hits a maximum value for stars below solar composition and, with increasing [Fe/H] above some critical value, declines. This trend is consistent, however, with the predictions from synthetic indices based upon much narrower Ca filters where the crossover is caused by the metallicity sensitivity of b-y.Comment: 13 pages, 9 eps figures, 1 tex table, 1 ascii tabl

    Phase behaviour of a model of colloidal particles with a fluctuating internal state

    Get PDF
    Colloidal particles are not simple rigid particles, in general an isolated particle is a system with many degrees of freedom in its own right, e.g., the counterions around a charged colloidal particle.The behaviour of model colloidal particles, with a simple phenomenological model to account for these degrees of freedom, is studied. It is found that the interaction between the particles is not pairwise additive. It is even possible that the interaction between a triplet of particles is attractive while the pair interaction is repulsive. When this is so the liquid phase is either stable only in a small region of the phase diagram or absent altogether.Comment: 12 pages including 4 figure

    Structural Properties of the Sliding Columnar Phase in Layered Liquid Crystalline Systems

    Full text link
    Under appropriate conditions, mixtures of cationic and neutral lipids and DNA in water condense into complexes in which DNA strands form local 2D smectic lattices intercalated between lipid bilayer membranes in a lamellar stack. These lamellar DNA-cationic-lipid complexes can in principle exhibit a variety of equilibrium phases, including a columnar phase in which parallel DNA strands from a 2D lattice, a nematic lamellar phase in which DNA strands align along a common direction but exhibit no long-range positional order, and a possible new intermediate phase, the sliding columnar (SC) phase, characterized by a vanishing shear modulus for relative displacement of DNA lattices but a nonvanishing modulus for compressing these lattices. We develop a model capable of describing all phases and transitions among them and use it to calculate structural properties of the sliding columnar phase. We calculate displacement and density correlation functions and x-ray scattering intensities in this phase and show, in particular, that density correlations within a layer have an unusual exp(const.ln2r)\exp(- {\rm const.} \ln^2 r) dependence on separation r. We investigate the stability of the SC phase with respect to shear couplings leading to the columnar phase and dislocation unbinding leading to the lamellar nematic phase. For models with interactions only between nearest neighbor planes, we conclude that the SC phase is not thermodynamically stable. Correlation functions in the nematic lamellar phase, however, exhibit SC behavior over a range of length scalesComment: 28 pages, 4 figure

    Equation of state for polymer liquid crystals: theory and experiment

    Full text link
    The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals. We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the system. We find that the configurational entropic part of the free energy enhances the effective repulsive interactions between the chains. This configurational contribution goes as the fourth root of the direct interactions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure the equation of state for DNA liquid crystals in 0.1M to 1M NaCl solutions. These measurements cover 5 orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equation of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the direct electrostatic double layer repulsion. This is a new and alternative way of measuring effective charge densities along semiflexible polyelectrolytes.Comment: text + 5 figures. Submitted to PR

    Negative electrostatic contribution to the bending rigidity of charged membranes and polyelectrolytes screened by multivalent counterions

    Full text link
    Bending rigidity of a charged membrane or a charged polyelectrolyte screened by monovalent counterions is known to be enhanced by electrostatic effects. We show that in the case of screening by multivalent counterions the electrostatic effects reduce the bending rigidity. This inversion of the sign of the electrostatic contribution is related to the formation of two-dimensional strongly correlated liquids (SCL) of counterions at the charged surface due to strong lateral repulsion between them. When a membrane or a polyelectrolyte is bent, SCL is compressed on one side and stretched on the other so that thermodynamic properties of SCL contribute to the bending rigidity. Thermodynamic properties of SCL are similar to those of Wigner crystal and are anomalous in the sense that the pressure, compressibility and screening radius of SCL are negative. This brings about substantial negative correction to the bending rigidity. For the case of DNA this effect qualitatively agrees with experiment.Comment: 8 pages, 2 figure
    corecore