The first part of this paper develops a theory for the free energy of
lyotropic polymer nematic liquid crystals. We use a continuum model with
macroscopic elastic moduli for a polymer nematic phase. By evaluating the
partition function, considering only harmonic fluctuations, we derive an
expression for the free energy of the system. We find that the configurational
entropic part of the free energy enhances the effective repulsive interactions
between the chains. This configurational contribution goes as the fourth root
of the direct interactions. Enhancement originates from the coupling between
bending fluctuations and the compressibility of the nematic array normal to the
average director. In the second part of the paper we use osmotic stress to
measure the equation of state for DNA liquid crystals in 0.1M to 1M NaCl
solutions. These measurements cover 5 orders of magnitude in DNA osmotic
pressure. At high osmotic pressures the equation of state, dominated by
exponentially decaying hydration repulsion, is independent of the ionic
strength. At lower pressures the equation of state is dominated by fluctuation
enhanced electrostatic double layer repulsion. The measured equation of state
for DNA fits well with our theory for all salt concentrations. We are able to
extract the strength of the direct electrostatic double layer repulsion. This
is a new and alternative way of measuring effective charge densities along
semiflexible polyelectrolytes.Comment: text + 5 figures. Submitted to PR