25 research outputs found

    A variant of the Hough Transform for the combined detection of corners, segments, and polylines

    Get PDF
    The Hough Transform (HT) is an effective and popular technique for detecting image features such as lines and curves. From its standard form, numerous variants have emerged with the objective, in many cases, of extending the kind of image features that could be detected. Particularly, corner and line segment detection using HT has been separately addressed by several approaches. To deal with the combined detection of both image features (corners and segments), this paper presents a new variant of the Hough Transform. The proposed method provides an accurate detection of segment endpoints, even if they do not correspond to intersection points between line segments. Segments are detected from their endpoints, producing not only a set of isolated segments but also a collection of polylines. This provides a direct representation of the polygonal contours of the image despite imperfections in the input data such as missing or noisy feature points. It is also shown how this proposal can be extended to detect predefined polygonal shapes. The paper describes in detail every stage of the proposed method and includes experimental results obtained from real images showing the benefits of the proposal in comparison with other approaches

    Dissecting cause and effect in host-microbiome interactions using the combined worm-bug model system

    Get PDF
    High-throughput molecular studies are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome we need robust experimental models that allow the systematic manipulation of variables to test the multitude of hypotheses arisen from large-scale ‘meta-omic’ projects. The nematode C. elegans combined with bacterial models offers an avenue to dissect cause and effect in host-microbiome interactions. This combined model allows the genetic manipulation of both host and microbial genetics and the use of a variety of tools, to identify pathways affecting host health. A number of recent high impact studies have used C. elegans to identify microbial pathways affecting ageing and longevity, demonstrating the power of the combined C. elegans-bacterial model. Here I will review the current state of the field, what we have learned from using C. elegans to study gut microbiome and host interactions, and the potential of using this model system in the future

    Sunflower wax recovered from oil tank settlings: Revaluation of a waste product from the oilseed industry

    No full text
    BACKGROUND: The sunflower oil industry produces a large amount of waste that is not currently commercially exploited, as in the case of oil‐tank settlings. The recovery of a high value‐added by‐product, such as sunflower wax, would increase the commercial value of this waste. In this original research paper, a method that allows the recovery and purification of this by‐product was developed. The wax was characterized and its potential use as an organogelator agent was investigated. RESULTS: The waste sample was composed of 45.1% oily material, 16.9% of this being impure waxes. Purification was performed through two different methods, obtaining three waxes with different degrees of purity. All the waxes were composed of wax esters with a range of 40–60 carbon atoms, exhibiting traces of carotenes, free fatty acids, and free fatty alcohols. The presence of phospholipids was observed in two of them. The third wax presented a higher total wax ester content and physicochemical characteristics (color and thermal behavior) similar to those of commercial sunflower waxes, and was the most efficient organogelator agent, requiring only a small amount of wax (1.5%) to structure high oleic sunflower oil. CONCLUSION: It was verified that sunflower wax could be recovered from oil‐tank settlings. A purification method that allowed sunflower wax with similar physicochemical properties to those of commercial waxes to be obtained was also developed. The purified waxes were capable of structuring high oleic sunflower oil. © 2019 Society of Chemical IndustryFil: Redondas, Cintia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Baumler, Erica Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Carelli Albarracin, Amalia Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentin
    corecore