181 research outputs found

    Magnetization reversal by injection and transfer of spin: experiments and theory

    Full text link
    Reversing the magnetization of a ferromagnet by spin transfer from a current, rather than by applying a magnetic field, is the central idea of an extensive current research. After a review of our experiments of current-induced magnetization reversal in Co/Cu/Co trilayered pillars, we present the model we have worked out for the calculation of the current-induced torque and the interpretation of the experiments

    Switching a spin-valve back and forth by current-induced domain wall motion

    Full text link
    We have studied the current-induced displacement of a domain wall (DW) in the permalloy (Py) layer of a Co/Cu/Py spin valve structure at zero and very small applied field. The displacement is in opposite direction for opposite dc currents, and the current density required to move DW is only of the order of 10^6 A/cm^2. For H = 3 Oe, a back and forth DW motion between two stable positions is observed. We also discuss the effect of an applied field on the DW motion.Comment: 4 pages, 3 figure

    Switching the magnetic configuration of a spin valve by current induced domain wall motion

    Full text link
    We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.Comment: 3 pages, 3 figure

    Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque

    Full text link
    We investigate the dynamics of two coupled vortices driven by spin transfer. We are able to independently control with current and perpendicular field, and to detect, the respective chiralities and polarities of the two vortices. For current densities above J=5.7107A/cm2J=5.7*10^7 A/cm^2, a highly coherent signal (linewidth down to 46 kHz) can be observed, with a strong dependence on the relative polarities of the vortices. It demonstrates the interest of using coupled dynamics in order to increase the coherence of the microwave signal. Emissions exhibit a linear frequency evolution with perpendicular field, with coherence conserved even at zero magnetic field

    Coupling efficiency for phase locking of a spin transfer oscillator to a microwave current

    Full text link
    The phase locking behavior of spin transfer nano-oscillators (STNOs) to an external microwave signal is experimentally studied as a function of the STNO intrinsic parameters. We extract the coupling strength from our data using the derived phase dynamics of a forced STNO. The predicted trends on the coupling strength for phase locking as a function of intrinsic features of the oscillators i.e. power, linewidth, agility in current, are central to optimize the emitted power in arrays of mutually coupled STNOs

    Origin of the spectral linewidth in non linear oscillators based on MgO tunnel junctions

    Full text link
    We demonstrate the strong impact of the oscillator agility on the line broadening by studying spin transfer induced microwave emission in MgO-based tunnel junctions with current. The linewidth is almost not affected by decreasing the temperature. At very low currents, a strong enhancement of the linewidth at low temperature is attributed to an increase of the non linearity, probably due to the field-like torque. Finally we evidence that the noise is not dominated by thermal fluctuations but rather by the chaotization of the magnetization system induced by the spin transfer torque.Comment: 12 pages, 3 figures, published in Phys. Rev. B 80, 060404 (2009

    Differential effects of tissue plasminogen activator and streptokinase on infarct size and on rate of enzyme release: influence of early infarct related artery patency: The GUSTO Enzyme Substudy

    Get PDF
    Background The recent international GUSTO trial of 41 021 patients with acute myocardial infarction demonstrated improved 90-mm infarct related artery patency as well as reduced mortality in patients treated with an accelerated regimen of tissue plasminogen activator, compared to patients treated with streptokinase. A regimen combining tissue plasminogen activator and streptokinase yielded intermediate results. The present study investigated the effects of treatment on infarct size and enzyme release kinetics in a subgroup of these patients. Methods A total of 553 patients from 15 hospitals were enrolled in the study. Four thrombolytic strategies were compared: streptokinase with subcutaneous heparin, streptokinase with intravenous (iv.) heparin, tissue plasminogen activator with iv. heparin, and streptokinase plus tissue plasminogen activator with i.v. heparin. The activity of alpha-hydroxybutyrate dehydrogenase (HBDH) in plasma was centrally analysed and infarct size was defined as cumulative HBDH release per litre of plasma within 72 h of the first symptoms (Q(72)). Patency of the infarct-related vessel was determined by angiography in 159 patients, 90 mm after treatment. Results Infarct size was 3·72 g-eq . 1−1 in patients with adequate coronary perfusion (TIMI-3) at the 90 mm angi-ogram and larger in patients with TIMI-2 (4·35 g-eq . 1−1) or TIMI 0-1 (5·07 g-eq . 1−1)flow (P=0·024). In this subset of the GUSTO angiographic study, early coronary patency rates (TIMI 2+3) were similar in the two streptokinase groups (53 and 46%). Higher, but similar, patency rates were observed in the tissue plasminogen activator and combination therapy groups (87 and 90%). Median infarct size for the four treatment groups, expressed in gram- equivalents (g-eq) of myocardium, was 4·4, 4·5, 3·9 and 3·9 g-eq per litre of plasma (P=0·04 for streptokinase vs tissue plasminogen activator). Six hours after the first symptoms, respectively 5·3, 6·6, 14·0 and 13·6% of total HBDH release was complete (P<0·000l for streptokinase vs tissue plasminogen activator). Conclusions Rapid and complete coronary reperfusion salvages myocardial tissue, resulting in limitation of infarct size and accelerated release of proteins from the myocardium. Treatment with tissue plasminogen activator, resulting in earlier reperfusion was more effective in reducing infarct size than the streptokinase regimens, which contributes to the differences in survival between treatment groups in the GUSTO tria

    Optimizing magneto-dipolar interactions for synchronizing vortex based spin-torque nano-oscillators

    Get PDF
    We report on a theoretical study about the magneto-dipolar coupling and synchronization between two vortex-based spin-torque nano-oscillators. In this work we study the dependence of the coupling efficiency on the relative magnetization parameters of the vortices in the system. For that purpose, we combine micromagnetic simulations, Thiele equation approach, and analytical macro-dipole approximation model to identify the optimized configuration for achieving phase-locking between neighboring oscillators. Notably, we compare vortices configurations with parallel (P) polarities and with opposite (AP) polarities. We demonstrate that the AP core configuration exhibits a coupling strength about three times larger than in the P core configuration.Comment: 8 pages, 11 figure

    Identification and selection rules of the spin-wave eigen-modes in a normally magnetized nano-pillar

    Get PDF
    We report on a spectroscopic study of the spin-wave eigen-modes inside an individual normally magnetized two layers circular nano-pillar (Permalloy|Copper|Permalloy) by means of a Magnetic Resonance Force Microscope (MRFM). We demonstrate that the observed spin-wave spectrum critically depends on the method of excitation. While the spatially uniform radio-frequency (RF) magnetic field excites only the axially symmetric modes having azimuthal index =0\ell=0, the RF current flowing through the nano-pillar, creating a circular RF Oersted field, excites only the modes having azimuthal index =+1\ell=+1. Breaking the axial symmetry of the nano-pillar, either by tilting the bias magnetic field or by making the pillar shape elliptical, mixes different \ell-index symmetries, which can be excited simultaneously by the RF current. Experimental spectra are compared to theoretical prediction using both analytical and numerical calculations. An analysis of the influence of the static and dynamic dipolar coupling between the nano-pillar magnetic layers on the mode spectrum is performed
    corecore