30 research outputs found

    Multistability and localization in forced cyclic symmetric structures modelled by weakly-coupled Duffing oscillators

    Get PDF
    Many engineering structures are composed of weakly coupled sectors assembled in a cyclic and ideally symmetric configuration, which can be simplified as forced Duffing oscillators. In this paper, we study the emergence of localized states in the weakly nonlinear regime. We show that multiple spatially localized solutions may exist, and the resulting bifurcation diagram strongly resembles the snaking pattern observed in a variety of fields in physics, such as optics and fluid dynamics. Moreover, in the transition from the linear to the nonlinear behaviour isolated branches of solutions are identified. Localization is caused by the hardening effect introduced by the nonlinear stiffness, and occurs at large excitation levels. Contrary to the case of mistuning, the presented localization mechanism is triggered by the nonlinearities and arises in perfectly homogeneous systems

    Travelling and standing envelope solitons in discrete non-linear cyclic structures

    No full text
    International audienceEnvelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery

    Multiple spatially localized dynamical states in friction-excited oscillator chains

    Get PDF
    International audienceFriction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity v d while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity

    Solitons in non-linear cyclic system

    Get PDF
    In this paper we consider the case of a non-linear structure with cyclic symmetry which can be seen as approximation for bladed disk type structures. Using the multiple scale method, we show that soliton solutions are possible within such structure. The theoretical developments are illustrated with numerical simulations on a simple system with cubic non-linearities

    Spiral2 cryomodules B tests results

    Get PDF
    MOP010International audienceAssembly and tests of the SPIRAL2 superconducting linac's cryomodules at CEA/Saclay and IPN/Orsay have now reached cruising speed after having faced a series of problems, among them contamination. 19 cryomodules are composing the whole Linac and IPN Orsay is in charge of the 7 cryomodules B, housing two 88 MHz, beta 0.12 Quarter-Wave Resonators. Threecryomodules have been assembled and successfullytested up to the nominal gradient of 6.5 MV/m for all cavities with also cryogenic losses withinspecifications. Two of them are fully qualified and already delivered to GANIL. The thirdone showed misalignment ofone cavity which could lead to partial disassembly if needed. This paper presents the results of those cryomodules tests as well as the status of the remaining ones

    Global and bifurcation analysis of a structure with cyclic symmetry

    No full text
    International audienceIntroducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions--where T is known--of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited

    Multiple spatially localized dynamical states in friction-excited oscillator chains

    No full text
    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity v d while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior ( i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a “snaking-like” bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity
    corecore