7 research outputs found

    The design, construction, and commissioning of the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns

    A review of morphing aircraft

    No full text
    Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is short for metamorphose: however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title “shape morphing”. Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep and chord), out-of-plane transformation (twist, dihedral/gull, spanwise bending) and airfoil adjustment (camber and thickness).Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity or weight, although in certain circumstances these were overcome by system level benefits. The current trend for highly efficient and “green” aircraft makes such compromises less acceptable, calling for innovative morphing designs able to provide more benefits and fewer drawbacks. Recent developments in “smart” materials may overcome the limitations and enhance the benefits from existing design solutions. The challenge is to design a structure that is capable of withstanding the prescribed loads, but is also able to change its shape: ideally there should be no distinction between the structure and the actuation system. The blending of morphing and smart structures in an integrated approach requires multi-disciplinary thinking from the early development, which significantly increases the overall complexity, even at the preliminary design stage. Morphing is a promising enabling technology for future, next generation aircraft. However, manufacturers and end users are still too skeptical of the benefits to adopt morphing in the near future. Many developed concepts have a technology readiness level that is still very low. The recent explosive growth of satellite services means that UAVs are the technology of choice for many investigations on wing morphing.This paper presents a review of the state of the art on morphing aircraft and focuses on structural, shape changing morphing concepts for both fixed and rotary wings, with particular reference to active systems. Inflatable solutions have been not considered, and skin issues and challenges are not discussed in detail. Although many interesting concepts have been synthesized, few have progressed to wing tunnel testing, and even fewer have flown. Furthermore, any successful wing morphing system must overcome the weight penalty due to the additional actuation systems.<br/

    A Review of Morphing Aircraft

    No full text

    Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999)

    No full text
    corecore