11 research outputs found

    Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds

    Full text link
    peer reviewedThe yeast Yarrowia lipolytica possesses five acyl-CoA oxidases (Aox1p to 5), the enzyme catalysing the first reaction of β-oxidation. The understanding of the specific role of each acyl-CoA oxidase is important to construct a yeast strain growing at a good rate and able to produce without degrading the aroma compound γ-decalactone. In this study we observed that Aox4p exhibits a slight activity on a broad spectrum of substrates and that it is involved in lactone degradation. We constructed a strain lacking this activity. Its growth was only slightly altered and it produced 10 times more lactone than the wild type in 48h. © 2004 Elsevier B.V. All rights reserved

    Biotechnological production of Îł-decalactone, a peach like aroma, by Yarrowia lipolytica

    Get PDF
    The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. Îł-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes were endorsed to cost-effect this compound production. One of the best-known methods to produce -decalactone is from ricinoleic acid catalyzed by Yarrowia lipolytica, a generally regarded as safe status yeast. As yet, several factors affecting -decalactone production remain to be fully understood and optimized. In this review, we focus on the aromatic compound -decalactone and its production by Y. lipolytica. The metabolic pathway of lactone production and degradation are addressed. Critical analysis of novel strategies of bioprocess engineering, metabolic and genetic engineering and other strategies for the enhancement of the aroma productivity are presented.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684)

    Generation of flavors and fragrances through biotransformation and de novo synthesis

    Get PDF
    Flavors and fragrances are the result of the presence of volatile and non-volatile compounds, appreciated mostly by the sense of smell once they usually have pleasant odors. They are used in perfumes and perfumed products, as well as for the flavoring of foods and beverages. In fact the ability of the microorganisms to produce flavors and fragrances has been described for a long time, but the relationship between the flavor formation and the microbial growth was only recently established. After that, efforts have been put in the analysis and optimization of food fermentations that led to the investigation of microorganisms and their capacity to produce flavors and fragrances, either by de novo synthesis or biotransformation. In this review, we aim to resume the recent achievements in the production of the most relevant flavors by bioconversion/biotransformation or de novo synthesis, its market value, prominent strains used, and their production rates/maximum concentrations.We would like to thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145FEDER-006684), and BiotecNorte operation (NORTE-01-0145FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds

    Full text link
    The yeast Yarrowia lipolytica possesses five acyl-CoA oxidases (Aox1p to 5), the enzyme catalysing the first reaction of β-oxidation. The understanding of the specific role of each acyl-CoA oxidase is important to construct a yeast strain growing at a good rate and able to produce without degrading the aroma compound γ-decalactone. In this study we observed that Aox4p exhibits a slight activity on a broad spectrum of substrates and that it is involved in lactone degradation. We constructed a strain lacking this activity. Its growth was only slightly altered and it produced 10 times more lactone than the wild type in 48h. © 2004 Elsevier B.V. All rights reserved

    Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances.

    No full text
    International audienceResponding to consumer' demand for natural products, biotechnology is constantly seeking new biocatalysts. In the field of hydrophobic substrate degradation, some yeast species known some years ago as non-conventional, have acquired their right to be considered as good biocatalysts. These Candida, Yarrowia, Sporobolomyces ... are now used for themselves or for their lipases in processes to produce flavours and fragrances. In this paper we present some examples of use of these biocatalysts to generate high-value compounds and discuss the new trends related to progress in the development of molecular tools or the mastering of the redox characteristics of the medium

    Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications.

    No full text
    The alkane-assimilating yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates such as n-alkanes, fatty acids, fats and oils for which it has specific metabolic pathways. An overview of the oxidative degradation pathways for alkanes and triglycerides in Y. lipolytica is given, with new insights arising from the recent genome sequencing of this yeast. This includes the interaction of hydrophobic substrates with yeast cells, their uptake and transport, the primary alkane oxidation to the corresponding fatty alcohols and then by different enzymes to fatty acids, and the subsequent degradation in peroxisomal beta-oxidation or storage into lipid bodies. Several enzymes involved in hydrophobic substrate utilisation belong to multigene families, such as lipases/esterases (LIP genes), cytochromes P450 (ALK genes) and peroxisomal acyl-CoA oxidases (POX genes). Examples are presented demonstrating that wild-type and genetically engineered strains of Y. lipolytica can be used for alkane and fatty-acid bioconversion, such as aroma production, for production of SCP and SCO, for citric acid production, in bioremediation, in fine chemistry, for steroid biotransformation, and in food industry. These examples demonstrate distinct advantages of Y. lipolytica for their use in bioconversion reactions of biotechnologically interesting hydrophobic substrates.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Lactone Formation in Yeast and Fungi

    No full text
    International audienceLactones are important secondary metabolites for fungi. In this chapter are presented some lactones that are important in biotechnology such as flavoring lactones or fragrance macrocyclic musk compounds, whereas others are important for quorum sensing and health (mycotoxins). Different pathways or enzymes can give rise to lactones, and the pathways going through β-oxidation and ω-oxidation and the fungal polyketide pathway (relatively similar to the fatty acid synthesis pathway) are presented as well as the activity of Baeyer–Villiger monooxygenases and lactonases and their potential use in biotechnology
    corecore