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Abstract The request for new flavourings increases every

year. Consumer perception that everything natural is better is

causing an increase demand for natural aroma additives.

Biotechnology has become a way to get natural products. c-
Decalactone is a peach-like aroma widely used in dairy prod-

ucts, beverages and others food industries. Inmore recent years,

more and more studies and industrial processes were endorsed

to cost-effect this compound production.One of the best-known

methods to produce c-decalactone is from ricinoleic acid cat-

alyzed by Yarrowia lipolytica, a generally regarded as safe

status yeast. As yet, several factors affecting c-decalactone
production remain to be fully understood and optimized. In this

review, we focus on the aromatic compound c-decalactone and
its production by Y. lipolytica. The metabolic pathway of lac-

tone production and degradation are addressed. Critical analysis

of novel strategies of bioprocess engineering, metabolic and

genetic engineering and other strategies for the enhancement of

the aroma productivity are presented.

Keywords Bioreactor � b-Oxidation � c-Decalactone �
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Introduction

The consumer demand for tasty foods has been growing,

leading to an increasing need of aroma additions to

replenish or add flavour to products. As a result, the

production of these aromatic compounds, to be used by

industrial companies such as food and beverages, cosmet-

ics, chemical, pharmaceutical among others, has grown

exponentially (Marasco and Schmidt-Dannert 2003).

The use of biocatalysts in the production of flavouring

compounds similar with those present in natural sources is

preferred, among others, due to regulatory reasons. In the

U.S and according to European regulations (e.g. CFR 1990

and EEC 1334/2008), compounds isolated from natural

resources or obtained by microbial or enzymatic processes

involving precursors isolated from nature are classified as

‘‘natural’’. Consumer preferences reflecting the trends

towards ‘‘health lifestyle’’ decide that the vast majority of

flavour additives to be used in the food industry are com-

pounds classified as ‘‘natural’’. Biotechnological produc-

tion is an interesting approach for flavour production and

has attracted a great deal of research interest (Longo and

Sanromán 2006). Lactones are molecules comprising a

carbon cycle with one oxygen atom, resulting in a hydroxy

acid cyclisation. These compounds are very attractive for

the food industry since they have a very characteristic

‘‘fruity’’ aroma and are naturally found in a wide variety of

foods (fruits, milk and dairy products, meats and some

fermented foods) (Marasco and Schmidt-Dannert 2003).

For a long time they were obtained directly from fruits or

by chemical synthesis, but over the past few years, the use

of microorganisms and enzymes for the production of

natural flavour compounds has been extended (Endrizzi-

Joran et al. 1993). The market value of the so-called

‘‘biotechnological aroma’’ compounds is usually lower

than those extracted from nature and commonly far above

their synthetic counterparts (synthetic = US$ 150 kg-1;

natural = US$ 6000 kg-1; ‘‘biotech’’ = US$ 300 kg-1)

(Dubal et al. 2008).
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This mini-review aims to provide a background on the

new insights on the biotechnological production of c-de-
calactone covering some different strategies for increasing

aroma production.

The aromatic compound c-decalactone

The most important lactone for flavour application is c-
decalactone, with a mundial market volume of several

hundred tons per year and it has an oily-peach aroma, an

extraordinarily tenacious odour and a very powerful,

creamy-fruity, peach-like taste in concentrations below

5 mg L-1 (Schrader et al. 2004; Waché et al. 2003).

The interest of using yeast biotechnology for the pro-

duction of lactones arose in the 60 s, after the results

obtained by Okui et al. (1963) when studying the catabo-

lism of hydroxylated fatty acids in several organisms. After

that, numerous studies have been made on c-decalactone
production by yeast, often focused on the screening of

yeast strains and medium optimization (Endrizzi-Joran

et al. 1996). Most of the industrial processes use ricinoleic

acid, the main fatty acid (about 90 %) of castor oil, or

esters thereof, for its biotechnological production. This

aroma can be obtained from the biotransformation of rici-

noleic acid, catalysed by enzymes present in microorgan-

isms with GRAS status, conferring this way a natural label

to the compound.

c-Decalactone (C10H18O2) is a cyclic ester which results

from the condensation of the alcohol group –OH and a

carboxylic acid group –COOH of the same molecule. It is

characterized by a closed ring consisting of four carbon

atoms and a single endocyclic oxygen atom, coupled with

an adjacent ketone (Aguedo 2002).

There are several microorganisms selected for their

potentialities to produce aroma, in which the most impor-

tant are Pseudomonas, Sporobolomyces, Pichia, Candida

and Rhodotorula, being Y. lipolytica species the one with a

higher productivity.

c-Decalactone production through peroxisomal
b-oxidation

b-oxidation pathway is the classical biochemical route

involved in fatty acids degradation. It acts on an acyl-CoA

molecule and consists in a four-step reaction sequence,

yielding an acyl-CoA, which has two carbons less and an

acetyl-CoA. This sequence is repeated several times until

the complete breakdown of the compound (Fig. 1).

Lactonisation can occur at the whole C10 stage resulting

in other decalactones of variable interest, dec-3-enolide,

exhibiting very powerful fruity notes, and dec-2-enolide,

characterized with mushroom notes (Gatfield et al. 1993).

These lactones are probably related to a deficient 3-hy-

droxyacyl-CoA dehydrogenase activity. This later activity

reduces NAD? to NADH which is regenerated through a

shuttle mechanism (Hettema and Tabak 2000), that prob-

ably depends on the mitochondrial respiration. The accu-

mulation of these lactones is observed in anoxic

environments.

The enzymes involved in this pathway usually work in

several b-oxidation cycles and with different chain lengths

metabolites. Depending on many factors, the breakdown

can be stopped before the theoretical end, liberating med-

ium- or short-chain volatile compounds. These metabolites

can exit the pathway at each two b-oxidation cycles or

inside the sequence, leading to a variety of volatile com-

pounds. The commonly accepted pathway from ricinoleic

acid to c-decalactone is presented in Fig. 1: four b-oxida-
tion cycles occur, yielding 4-hidroxy-decanoyl-CoA, which

is then cyclised to c-decalactone. The yeast Y. lipolytica

possesses a family of six acyl-CoA oxidases (Aox1 to 6

encoded by POX1 to POX6) (Fig. 2). The first enzyme of

the pathway is generally considered as the limiting step in

the catalysis (Fig. 2b) (Groguenin et al. 2004) and the role

comprising the other acyl-CoA oxidase were enlightened

with the mutations in the POX genes. The disruption of

POX1 resulted in an increased b-oxidation activity but a

decrease on the production of c-decalactone (Pagot et al.

1998). Two Aox exhibited a high activity and a chain-

length specificity, one being long-chain-specific (Aox2)

and the other short-chain-specific (Aox3). The role of the

other Aox was less evident. Aox4, Aox5 and Aox6

exhibited a weak activity in the whole spectrum of straight-

chain acyl-CoA (from C4 to C18) and Aox1 did not exhibit

any detectable activity. The disruption of the genes corre-

sponding to these three Aox resulted in a two to fivefold

increase in the global Aox activity, suggesting a role in the

regulation of their activity. Also, in some POX mutants b-
oxidation of C10 or smaller acyl-CoA is responsible for a

decrease in the yield as a consequence of the c-decalactone
degradation (Waché et al. 2002; Groguenin et al. 2004).

Understanding the specific roles of each acyl-CoA oxi-

dase has been the basis for the ‘‘construction’’ of strains

growing at a good rate and producing c-decalactone
without degradation (Groguenin et al. 2004).

c-Decalactone degradation pathway

In the biotransformation of c-decalactone from ricinoleic

acid, a maximum concentration can be reached after which

starts to gradually decrease probably due to degradation

and/or re-consumption of the compound. Therefore, the c-
decalactone concentration in the medium results from the
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difference between what is produced and what is degraded

(Endrizzi-Joran 1994). This decrease in the aroma com-

pound concentration may be extremely prejudicial to the

productivity of the process (Aguedo et al. 2005b).

Although the metabolic pathways of lactone degrada-

tion are not fully elucidated, there are some aspects

related to this degradation that can be mentioned. First,

the hydroxy acid form (unlactonised form) appears to be

degraded faster than the lactone form (Endrizzi-Joran and

Belin 1995), suggesting that the step of hydrolysis of the

lactone exhibits a high control on the consumption. Then,

the degradation pathway is very specific to the lactone

(Fuganti et al. 1993; Latrasse et al. 1993; Fantin et al.

2001), since no degradation has been observed in the

same conditions for lactones with similar structures, such

as 3-hydroxy-c-decalactone or decen-4-olides (Waché

et al. 2001).

Several pathways of degradation are possible. The most

probable one includes the opening of the cyclic form

through a blood c-lactonase activity (Fishbein and Bess-

man 1966), followed by the activation of the CoA esters

and b-oxidation. When the hydroxy group is in the a-po-
sition, a a-decarboxylation is required prior to the b-oxi-
dation (Voet and Voet 1990). Another possible pathway

involves the x-oxidation of the lactone to yield, after

delactonisation, a x-dicarboxylic acid. The production of

such diacids by cells with the inability to perform b-oxi-
dation reactions has already been described (Picataggio

et al. 1992; Fabritius et al. 1998). Nevertheless, this

behaviour is not restricted to cells lacking the enzymes to

Fig. 1 The pathway from

ricinoleic acid to c-decalactone
and enzymes involved in the

yeast peroxisomal b-oxidation.
Adapted from Waché et al.

(1998) and Blin-Perrin et al.

(2000)
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perform b-oxidation reactions, although in cells exhibiting

an intact b-oxidation the substrate used are the dicarboxylic
acids to envisage its degradation. The involvement of b-
oxidation in the degradation is highly suggested by results

obtained with acyl-CoA oxidase-modified mutants, in

which the mutant lacking the enzyme of the b-oxidation
pathway is the only one unable to degrade c-decalactone
(Waché et al. 2001).

New insights into c-decalactone production

Metabolic engineering of b-oxidation

Developments for the lactone production processes have

been made with the wild-type strain resulting in c-de-
calactone concentrations of 12 g L-1 (Rabenhorst and

Gatfield 2000). Nevertheless, rapid lactone degradation is

observed due to high activity level of the acyl-CoA oxidase

in Y. lipolytica. Also, only a portion of the ricinoleic acid is

oxidized to the C10 level, and the C10 product serves as the

precursor for other lactones (Farbood et al. 1989; Gatfield

et al. 1993).

As an attempt to increase c-decalactone concentration,

serial knockouts for each acyl-CoA enzymes (Aox1-5)

were made (Fig. 2) (Wang et al. 1999; Luo et al.

2000, 2002). Waché et al. 2001, 2002) studied the

involvement of these enzymes in the biotransformation of

c-decalactone by Y. lipolytica and built strains that were

disrupted in one or several acyl-CoA genes. They observed

that the strain disrupted for POX2, POX3 and POX5 (which

still possess P0X4, encoding a weakly active Aox) and with

POX2 gene reincorporated in a plasmid, produced more

lactone, which is not consumed. Also, Groguenin et al.

(2004) constructed a mutant strain (Dpox2–pox5, pPOX2–
POX2) that produced about 49 more c-decalactone than

the WT (400 vs. 100 mg L-1) and was unable to degrade

this aroma. Guo et al. (2011) reconstructed a mutant strain

with POX2 gene overexpressed and a knockout in the

POX3 gene, and observed that c-decalactone production

increased as a result of these two alterations and no aroma

reconsumption was observed.

Fig. 2 Schematic representation of POX genes in Y. lipolytica

genome and respective activity for the AOX enzymes. a Genes

positioned in the different chromosomes (genes are not scaled). Code

is as in b. The 1 M represents 1 million base pair. b Selective activity

of AOX enzymes towards fatty acids of different chain length. The

number of carbons of the substrate molecule is indicated in the top.

The circles below indicate the qualitative activity for each AOX on

the ricionolei acid. Circles are filled with a code and indicate the

activity level of the AOX towards the elongation of fatty acids:�—

short chain fatty acids (the low intensity represent low activity for

long chain fatty acids); �—long chain fatty acids; �—whole

spectrum of straight-chain; �—not exhibit any detectable activity.

Adapted from Groguenin et al. (2004) and Waché et al. 2001, 2002)
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Waché et al. (2001) observed that the accumulation of

3-hydroxy-c-decalactone in the wild type strain was related

with the high Aox efficiency. The combined disruption of

the Aox-encoding genes (like Dpox2pox3) allows the reflux
towards the production of c-decalactone and the accumu-

lation of hydroxy-lactone is no longer observed. Recently,

Braga et al. (2015b) also study the effect of POX genotype

on c-decalactone production and reconsumption, and

observed that the decrease of aroma was prevented and the

production of hydroxylactone was minimized with

MTLY40-2P strain (disrupted in the genes POX2-5 and

overexpressing Aox2p). Different rounds of UV irradiation

and genome shuffling were also used to modified Yarrowia

strains, which were able to produce a 6.5-fold higher c-
decalactone concentration than the wild type (Zhao et al.

2014). Efforts to decipher the complete synthetic pathway

along with novel metabolic engineering approaches may

improve lactone production by yeast in the next few years.

In silico genome-scale analysis will be an important tool to

understand c-decalactone production. In recent years, three

genome-scale metabolic models of Y. lipolytica have been

developed by Loira et al. (2012), Pan and Hua (2012) and

Kavscek et al. (2015), although none of them has yet been

used in metabolic engineering approaches.

Bioprocess engineering developments

Besides the advances in the construction of modified

strains, which allowed the production of higher c-de-
calactone concentrations in the culture medium, the bio-

transformation of ricinoleic acid with Y. lipolytica has

gained special attention from researchers in many different

aspects.

Role of lipase

Different sources of ricinoleic acid such as methyl rici-

noleate or castor oil have been used as substrates for c-
decalactone production (Alchihab et al. 2010; Braga et al.

2012, 2013b; Gomes et al. 2010; Moradia et al. 2013; Page

and Eilerman 1996). When esters or castor oil are used as

substrate, the rate of release of free ricinoleic acid also

plays an important role in lactone formation rate. Braga

et al. (2012, 2013b) pointed out the importance of extra-

cellular lipases, namely the endogenous lipase of Y.

lipolytica W29 and extracellular lipases (Lipozyme TL

IM), for the fast release of ricinoleic acid from castor oil

and consequently faster formation of c-decalactone. Nev-
ertheless, in an industrial point of view, this process is not

the most adequate since it is cost- and time-consuming.

Thus, overexpressing Lip2 enzyme would bridge the gap of

this problem by improving c-decalactone production rate

with no extra costs. This was hereafter explored by Braga

et al. (2015b) that studied c-decalactone production by the

Y. lipolytica JMY3010 that has an additional copy of LIP2

gene coding for the main extracellular lipase. Their results

shown that the over-expression of Lip2p gene increased the

c-decalactone production rate.

Product and substrate toxicity

Beside the genetic engineering approaches the highest

drawback may arise from yeast sensibility and toxicity

towards elevated concentrations of lactone, which can be a

limiting factor in the industrial implementation of its

production.

The immobilization of microbial cells has been shown to

provide some protection to the cells against physico-

chemical changes, inhibitory substances, as well as

enhanced substrate utilization, faster fermentation rates,

prolonged cells activity and stability (Nedović et al. 2010).

Fang and Zhang (2008) immobilized Y. lipolytica cells in a

mixture of PVA and carrageenin for c-decalactone pro-

duction and increased its production in 40 %. A mixture of

sodium alginate and attapulgite was also used by Zhao

et al. (2012) resulting in a 2.5-fold increase in c-decalac-
tone production by Y. lipolytica. Braga and Belo (Braga

and Belo 2013) compared different materials for Y.

lipolytica immobilization by adsorption that could be used

in the production of c-decalactone from castor oil.

According to their observations, the highest aroma con-

centration was obtained with immobilized cells in

DupUM� (a thermoplastic support). More recently, Zhao

et al. (2015) improved c-decalactone production from 3.75

to 8 g L-1 through cell immobilization in attapulgite along

with the use of ionic liquid as a co-solvent.

Oxygen role

A further factor influencing the formation of c-decalactone
in Y. lipolytica is the concentration of dissolved oxygen

and the oxidative state of the medium, due to the oxygen

role on the b-oxidation pathway (Aguedo et al. 2005a;

Fickers et al. 2005; Kamzolova et al. 2003). Thus, the

oxygen transfer rate (OTR) from the gas to the liquid is a

key factor in the biotransformation process optimization.

Aguedo et al. (2005a) studied the b-oxidation pathway on

Y. lipolytica W29 on methyl ricinoleate medium under

higher air pressure (5 bar), i.e., under increased O2 solu-

bility and observed that although cells grew normally, c-
decalactone production decreased in these conditions.

Increased O2 favoured the accumulation of decenolides

compounds of the metabolic pathway. Thus, it was sug-

gested that the control of the pathway by dehydrogenase

seems to prevail when O2 exceeds a threshold. In fact, the

effect of oxygen on b-oxidation fluxes is quite complex and
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different behaviour has been reported according to oxygen

level. Escamilla-Garcı́a et al. (2007) reported that under

very low aeration conditions a high accumulation of c-
decalactone was observed, due to the inhibition of acyl-

CoA oxidase. Under slightly higher aeration conditions

(Escamilla-Garcia et al. 2009), but the aeration level still

low, the impact would be on 3-hydroxyacyl-CoA dehy-

drogenase through the regeneration of NAD (respiration-

dependent) that results in 3-hydroxy-c-decalactone pro-

duction however does not affect acyl-CoA oxidase activity.

By increasing aeration, b-oxidation is optimal and few

intermediates were accumulated. Finally, very high aera-

tion disturbs the b-oxidation fluxes resulting in higher

accumulation of 3-hydroxy-b-decalactone (Aguedo et al.

2005a, b; Gomes et al. 2007). Further experiments from

Braga and Belo (Braga and Belo 2015) also showed a

higher c-decalactone production at low oxygenation rates,

but a lower time was needed to reach the maximum aroma

concentration at higher OTR, resulting in higher produc-

tivities. Escamilla-Garcia et al. (2014) reported a tenfold

increase of 3-hydroxy-c-decalactone production at high

aeration rates observed in an airlift bioreactor made of

plastic. The formation of adhering biofilms of Y. lipolytica

stimulates the production of 3-hydroxy-c-decalactone that

is an indirect effect of aeration conditions inside

bioreactors.

Process engineering

Yarrowia lipolytica cells are hydrophilic with a good

attraction to hydrophobic surfaces or molecules when pre-

viously immersed in water. During the biotransformation of

castor oil by Y. lipolytica direct contact occurs between the

surface of the cells and the small substrate droplets and it is

possible to increase the contact by choosing a surfactant

having an affinity for the yeast (cationic surfactant) (Aguedo

et al. 2004). The role of cells hydrophobicity in c-decalac-
tone production was also investigated by Gomes et al.

(2010). They observed that the use ofmore hydrophobic cells

in c-decalactone production increased the affinity and con-

sequently the uptake of the substrate by the cells, improving

the overall process productivity. Escamilla-Garcia et al.

(2014) also suggested that cells hydrophobicity could be

increased under high aeration rates.

Strategies to improve aroma production also addressed

the culture conditions, namely the medium pH, that is

optimal for c-decalactone production by Y. lipolytica in a

value around 6 (Garcia et al. 2007; Gomes et al. 2011). The

effect of medium composition on c-decalactone production
has also been studied. Braga et al. (2015b) reported that

increasing castor oil concentration from 30 to 60 g L-1

increased the aroma production for Y. lipolytica W29 and

MTLY40-2P strains.

Bioreactors and mode of operation

Different type of bioreactors have been investigated for

application on the biotransformation of methyl ricinoleate

or castor oil for aroma production, been the classical STR

the most used. Operational conditions on these systems

may have different impacts on Y. lipolytica cultures char-

acteristics and behaviour, with influence in lactones

productivities.

The production of c-decalactone from castor oil in batch

cultures of Y. lipolytica W29 was compared in stirred tank

and airlift bioreactors (Braga et al. 2015b) and a twofold

increase in c-decalactone concentration (around 3 g L-1)

was achieved in the airlift compared to STR. Quantitative

image analysis techniques were used to investigate the

possible morphological changes in both systems and

showed that pneumatic agitation causes less impact in the

cells morphology than mechanical agitation.

To avoid c-decalactone degradation and minimize

inhibitory effects of ricinoleic acid on the cells, Gomes

et al. (2012) showed that fed-batch cultivation is an inter-

esting alternative. In fed-batch using intermittent feed, they

were able to obtain an aroma concentration of 6.7 g L-1,

compared to 1.9 g L-1 in batch fermentation and the pro-

duction of the side product 3-hydroxy-c-decalactone
increased simultaneously to 10 g L-1. Nevertheless, in this

system, the maintenance of an emulsion causes numerous

constraints to ensure that the supply of fresh medium and

withdraw concerns an emulsion with the same character-

istics. Thus, the substrate addition by pulses (step-wise

feed-batch) is a way of circumventing this problem. Using

this strategy, Gomes et al. (2012) obtained a c-decalactone
productivity of 0.043 g L-1 h-1 for a step-wise fed-batch

operation applied to Y. lipolytica W29, when 30 g L-1

methyl ricinoleate was fed twice to the bioreactor. Braga

et al. (2015b) also attempted a step-wise fed-batch strategy

with MTLY40-2P strain, in which 60 g L-1 of castor oil

was added in two pulses, leading to a twofold increase in c-
decalactone concentration (around 7 g L-1) compared with

a batch mode.

Conclusions

c-Decalactone production by biotransformation of castor

oil using microorganisms is an attractive means to produce

aroma compounds. Although, the scientific community has

dedicated time and efforts around the production of ‘‘nat-

ural’’ aromas, the overall productivity is still very low.

Different approaches were already realized to overcome

hurdles of the application of microbial strains for the

synthesis of flavour compounds. Higher yields can be

obtained by choosing the appropriate microorganisms and
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the inhibitory effect of produced lactone can be overcome

by fed-batch fermentation. Next to these strategies, the

influence of the oxygen concentration has to be considered

as well as the availability of the substrate. In all cases, for

the bioprocess engineering a detailed understanding of the

regulation of different pathways is of great advantage to

achieve maximum yields and product concentrations.

However, until now, the yields of the products are too low

to make the biotechnological process workable and further

studies are necessary to overcome the limitations found to

date. Additionally, fermentation technologies, downstream

processes and up-scaling from lab to industrial scales

require more rigorous studies not only to control and to

maximize yield but also to reduce competing undesired

reactions.
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factorial design to investigate the effects of pH and aeration on

the accumulation of lactones by Yarrowia lipolytica. J Appl

Microbiol 103:1508–1515

Escamilla-Garcı́a E, Aguedo M, Gomes N, Choquet A, Belo I,

Teixeira JA, Belin J-M, Waché Y (2009) Production of
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