143 research outputs found

    The period-luminosity and period-radius relations of Type II and anomalous Cepheids

    Get PDF
    Method: In an accompanying paper (arXiv: 1705.00886) we determined luminosity and effective temperature for the 335 T2Cs and ACs in the LMC and SMC discovered in the OGLE-III survey, by constructing the spectral energy distribution (SED) and fitting this with model atmospheres and a dust radiative transfer model (in the case of dust excess). Building on these results we study the PL and PR relations. Using existing pulsation models for RR Lyrae and classical Cepheids we derive the period-luminosity-mass-temperature-metallicity relations, and then estimate the pulsation mass. Results: The PL relation for the T2Cs does not appear to depend on metallicity, and, excluding the dusty RV Tau stars, is Mbol=+0.121.78logPM_{\rm bol}= +0.12 -1.78 \log P (for P<50P < 50 days). Relations for fundamental and first overtone LMC ACs are also presented. The PR relation for T2C also shows little or no dependence on metallicity or period. Our preferred relation combines SMC and LMC stars and all T2C subclasses, and is logR=0.846+0.521logP\log R = 0.846 + 0.521 \log P. Relations for fundamental and first overtone LMC ACs are also presented. The pulsation masses from the RR Lyrae and classical Cepheid pulsation models agree well for the short period T2Cs, the BL Her subtype, and ACs, and are consistent with estimates in the literature, i.e. MBLH0.49M_{\rm BLH} \sim 0.49 \msol\ and MAC 1.3M_{\rm AC} ~\sim 1.3 \msol, respectively. The masses of the W Vir appear similar to the BL Her. The situation for the pWVir and RV Tau stars is less clear. For many RV Tau the masses are in conflict with the standard picture of (single-star) post-AGB evolution, the masses being either too large (\gtrsim 1 \msol) or too small (\lesssim 0.4 \msol).Comment: A&A accepte

    Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants

    Full text link
    We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 \msol, suggesting an initial mass well above 8~\msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.Comment: A&A accepted. The full version (100 pages, 12 MB) with complete tables and all figures of the appendices is available at http://homepage.oma.be/marting/articlesgroen.htm

    The Lutz-Kelker bias in trigonometric parallaxes

    Get PDF
    The theoretical prediction that trigonometric parallaxes suffer from a statistical effect, has become topical again now that the results of the Hipparcos satellite have become available. This statistical effect, the so-called Lutz-Kelker bias, causes measured parallaxes to be too large. This has the implication that inferred distances, and hence inferred luminosities are too small. Published analytic calculations of the Lutz-Kelker bias indicate that the inferred luminosity of an object is, on average, 30% too small when the error in the parallax is only 17.5%. Yet, this bias has never been determined empirically. In this paper we investigate whether there is such a bias by comparing the best Hipparcos parallaxes which ground-based measurements. We find that there is indeed a large bias affecting parallaxes, with an average and scatter comparable to predictions. We propose a simple method to correct for the LK bias, and apply it successfully to a sub-sample of our stars. We then analyze the sample of 26 `best' Cepheids used by Feast & Catchpole (1997) to derive the zero-point of the fundamental mode pulsators and leads to a distance modulus to the Large Magellanic Cloud - based on Cepheid parallaxes- of 18.56 +/- 0.08, consistent with previous estimates.Comment: MNRAS Letters in press; 6 pages LaTeX, 6 ps figure

    Pulsating stars in the VMC survey

    Full text link
    The VISTA survey of the Magellanic Clouds system (VMC) began observations in 2009 and since then, it has collected multi-epoch data at Ks and in addition multi-band data in Y and J for a wide range of stellar populations across the Magellanic system. Among them are pulsating variable stars: Cepheids, RR Lyrae, and asymptotic giant branch stars that represent useful tracers of the host system geometry.Comment: 8 pages, 7 figures, proceeding contribution of invited presentation at "Wide-field variability surveys: a 21st-century perspective", San Pedro de Atacama (Chile

    A dearth of OH/IR stars in the Small Magellanic Cloud

    Get PDF
    We present the results of targeted observations and a survey of 1612-, 1665-, and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3 - 4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with LMC and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05%, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity

    Luminosities and mass-loss rates of SMC and LMC AGB stars and Red Supergiants

    Full text link
    (Abridged) Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 \mum\ {\it Spitzer} IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. The O-rich stars are classified in foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to "astronomical silicates". Overall, the grain type by Volk & Kwok (1988) fit the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. Relations between mass-loss rates and luminosity and pulsation period are presented and compared to the predictions of evolutionary models, those by Vassiliadis & Wood (1993) and their adopted mass-loss recipe, and those based on a Reimers mass-loss law with a scaling of a factor of five. The Vassiliadis & Wood models describe the data better, although there are also some deficiencies, in particular to the maximum adopted mass-loss rate. The OGLE-III data reveal an O-rich star in the SMC with a period of 1749 days. Its absolute magnitude of Mbol=8.0M_{\rm bol}= -8.0 makes it a good candidate for a super-AGB star.Comment: A&A accepte

    Type II and anomalous Cepheids in the Kepler K2 mission

    Full text link
    We present the results of the analysis of Type II and anomalous Cepheids using the data from the Kepler K2 mission. The precise light curves of these pulsating variable stars are the key to study the details of their pulsation, such as the period-doubling effect or the presence of additional modes. We applied the Automated Extended Aperture Photometry (autoEAP) to obtain the light curves of the targeted variable stars which were observed. The light curves were Fourier analyzed. We investigated twelve stars observed by the K2 mission, seven Type II and five anomalous Cepheids. Among the Type II Cepheids EPIC 210622262 shows period-doubling, and four stars have modulation present in their light curves which are different from the period-doubling effect. We calculated the high-order Fourier parameters for the short-period Cepheids. We also determined physical parameters by fitting model atmospheres to the spectral energy distributions. The determined distances using the parallaxes measured by the Gaia space telescope have limited precision below 16 mag for these types of pulsating stars, regardless if the inverse method is used or the statistical method to calculate the distances. The BaSTI evolutionary models were compared to the luminosities and effective temperatures. Most of the Type II Cepheids are modeled with low metallicity models, but for a few of them solar-like metallicity ([Fe/H]=0.06) model is required. The anomalous Cepheids are compared to low-metallicity single stellar models. We do not see signs of binarity among our sample stars.Comment: 21 pages, 13 figures, accepted for publication in MNRA
    corecore