77 research outputs found

    The vector-valued big q-Jacobi transform

    Get PDF
    Big qq-Jacobi functions are eigenfunctions of a second order qq-difference operator LL. We study LL as an unbounded self-adjoint operator on an L2L^2-space of functions on R\mathbb R with a discrete measure. We describe explicitly the spectral decomposition of LL using an integral transform F\mathcal F with two different big qq-Jacobi functions as a kernel, and we construct the inverse of F\mathcal F.Comment: 35 pages, corrected an error and typo

    Wilson function transforms related to Racah coefficients

    Full text link
    The irreducible *-representations of the Lie algebra su(1,1)su(1,1) consist of discrete series representations, principal unitary series and complementary series. We calculate Racah coefficients for tensor product representations that consist of at least two discrete series representations. We use the explicit expressions for the Clebsch-Gordan coefficients as hypergeometric functions to find explicit expressions for the Racah coefficients. The Racah coefficients are Wilson polynomials and Wilson functions. This leads to natural interpretations of the Wilson function transforms. As an application several sum and integral identities are obtained involving Wilson polynomials and Wilson functions. We also compute Racah coefficients for U_q(\su(1,1)), which turn out to be Askey-Wilson functions and Askey-Wilson polynomials.Comment: 48 page

    On a pair of difference equations for the 4F3_4F_3 type orthogonal polynomials and related exactly-solvable quantum systems

    Full text link
    We introduce a pair of novel difference equations, whose solutions are expressed in terms of Racah or Wilson polynomials depending on the nature of the finite-difference step. A number of special cases and limit relations are also examined, which allow to introduce similar difference equations for the orthogonal polynomials of the 3F2 _3 F_2 and 2F1 _2 F_1 types. It is shown that the introduced equations allow to construct new models of exactly-solvable quantum dynamical systems, such as spin chains with a nearest-neighbour interaction and fermionic quantum oscillator models.Comment: 8 pages, to be published in Springer Proceedings in Mathematics & Statistic

    A solution to the Al-Salam--Chihara moment problem

    Full text link
    We study the qq-hypergeometric difference operator LL on a particular Hilbert space. In this setting LL can be considered as an extension of the Jacobi operator for q1q^{-1}-Al-Salam--Chihara polynomials. Spectral analysis leads to unitarity and an explicit inverse of a qq-analog of the Jacobi function transform. As a consequence a solution of the Al-Salam--Chihara indeterminate moment problem is obtained.Comment: 22 page

    LU factorizations, q=0 limits, and p-adic interpretations of some q-hypergeometric orthogonal polynomials

    Full text link
    For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q=0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relations which admit a dual system of orthogonal polynomials. For the q=0 orthogonal limit functions we discuss interpretations on p-adic spaces. In the little 0-Jacobi case we also discuss product formulas.Comment: changed title, references updated, minor changes matching the version to appear in Ramanujan J.; 22 p

    Properties of generalized univariate hypergeometric functions

    Get PDF
    Based on Spiridonov's analysis of elliptic generalizations of the Gauss hypergeometric function, we develop a common framework for 7-parameter families of generalized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In each case we derive the symmetries of the generalized hypergeometric function under the Weyl group of type E_7 (elliptic, hyperbolic) and of type E_6 (trigonometric) using the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contiguous relations using fundamental addition formulas for theta and sine functions. The top level degenerations of the hyperbolic and trigonometric hypergeometric functions are identified with Ruijsenaars' relativistic hypergeometric function and the Askey-Wilson function, respectively. We show that the degeneration process yields various new and known identities for hyperbolic and trigonometric special functions. We also describe an intimate connection between the hyperbolic and trigonometric theory, which yields an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in trigonometric hypergeometric functions.Comment: 46 page

    Quantum hypercomputation based on the dynamical algebra su(1,1)

    Full text link
    An adaptation of Kieu's hypercomputational quantum algorithm (KHQA) is presented. The method that was used was to replace the Weyl-Heisenberg algebra by other dynamical algebra of low dimension that admits infinite-dimensional irreducible representations with naturally defined generalized coherent states. We have selected the Lie algebra su(1,1)\mathfrak{su}(1,1), due to that this algebra posses the necessary characteristics for to realize the hypercomputation and also due to that such algebra has been identified as the dynamical algebra associated to many relatively simple quantum systems. In addition to an algebraic adaptation of KHQA over the algebra su(1,1)\mathfrak{su}(1,1), we presented an adaptations of KHQA over some concrete physical referents: the infinite square well, the infinite cylindrical well, the perturbed infinite cylindrical well, the P{\"o}sch-Teller potentials, the Holstein-Primakoff system, and the Laguerre oscillator. We conclude that it is possible to have many physical systems within condensed matter and quantum optics on which it is possible to consider an implementation of KHQA.Comment: 25 pages, 1 figure, conclusions rewritten, typing and language errors corrected and latex format changed minor changes elsewhere and
    corecore