114 research outputs found

    A novel patient engagement platform using accessible text messages and calls (Epharmix): Feasibility study

    Get PDF
    BACKGROUND: Patient noncompliance with therapy, treatments, and appointments represents a significant barrier to improving health care delivery and reducing the cost of care. One method to improve therapeutic adherence is to improve feedback loops in getting clinically acute events and issues to the relevant clinical providers as necessary (ranging from detecting hypoglycemic events for patients with diabetes to notifying the provider when patients are out of medications). Patients often don\u27t know which information should prompt a call to their physician and proactive checks by the clinics themselves can be very resource intensive. We hypothesized that a two-way SMS system combined with a platform web service for providers would enable both high patient engagement but also the ability to detect relevant clinical alerts. OBJECTIVE: The objectives of this study are to develop a feasible two-way automated SMS/phone call + web service platform for patient-provider communication, and then study the feasibility and acceptability of the Epharmix platform. First, we report utilization rates over the course of the first 18 months of operation including total identified clinically significant events, and second, review results of patient user-satisfaction surveys for interventions for patients with diabetes, COPD, congestive heart failure, hypertension, surgical site infections, and breastfeeding difficulties. METHODS: To test this question, we developed a web service + SMS/phone infrastructure ( Epharmix ). Utilization results were measured based on the total number of text messages or calls sent and received, with percentage engagement defined as a patient responding to a text message at least once in a given week, including the number of clinically significant alerts generated. User satisfaction surveys were sent once per month over the 18 months to measure satisfaction with the system, frequency and degree of communication. Descriptive statistics were used to describe the above information. RESULTS: In total, 28,386 text messages and 24,017 calls were sent to 929 patients over 9 months. Patients responded to 80% to 90% of messages allowing the system to detect 1164 clinically significant events. Patients reported increased satisfaction and communication with their provider. Epharmix increased the number of patient-provider interactions to over 10 on average in any given month for patients with diabetes, COPD, congestive heart failure, hypertension, surgical site infections, and breastfeeding difficulties. CONCLUSIONS: Engaging high-risk patients remains a difficult process that may be improved through novel, digital health interventions. The Epharmix platform enables increased patient engagement with very low risk to improve clinical outcomes. We demonstrated that engagement among high-risk populations is possible when health care comes conveniently to where they are

    P5A-Type ATPase Cta4p Is Essential for Ca2+ Transport in the Endoplasmic Reticulum of Schizosaccharomyces pombe

    Get PDF
    This study establishes the role of P5A-type Cta4 ATPase in Ca2+ sequestration in the endoplasmic reticulum by detecting an ATP-dependent, vanadate-sensitive and FCCP insensitive 45Ca2+-transport in fission yeast membranes isolated by cellular fractionation. Specifically, the Ca2+-ATPase transport activity was decreased in ER membranes isolated from cells lacking a cta4+ gene. Furthermore, a disruption of cta4+ resulted in 6-fold increase of intracellular Ca2+ levels, sensitivity towards accumulation of misfolded proteins in ER and ER stress, stimulation of the calcineurin phosphatase activity and vacuolar Ca2+ pumping. These data provide compelling biochemical evidence for a P5A-type Cta4 ATPase as an essential component of Ca2+ transport system and signaling network which regulate, in conjunction with calcineurin, the ER functionality in fission yeast

    Transcriptional Analysis Implicates Endoplasmic Reticulum Stress in Bovine Spongiform Encephalopathy

    Get PDF
    Bovine spongiform encephalopathy (BSE) is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER) and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR) in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity

    Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection

    Get PDF
    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections

    Of yeast, mice and men: MAMs come in two flavors

    Full text link

    Ameloblastic Ondontoma in a Foal

    No full text
    A 4 month old foal with right sided maxillary enlargement and considerable upper airway obstruction had an ameloblastic odontoma in the right maxillary sinus. This odontogenic tumour, probably congenital in nature, had extensively distorted the structure and contours of the sinus, and displaced the adjacent turbinates and nasal septum. Un foal de 4 mois présentait une hypertrophie du maxillaire supérieur droit avec obstruction marquée des voies respiratoires supérieures: ceci était provoqué par un odontome ameloblastique dans le sinus maxillaire droit. Cette tumeur odontogène de nature probablement congénitale avait déformé considérablement la structure et l'aspect du sinus et déplacé les cornets et le septum voisin. Ein vier Monate altes Fohlen mit einer rechtsseitigen Umfangsvermehrung der Maxilla und erheblicher Atem‐wegsstenose wies ein ameloblastisches Odontom in der rechten Kieferhöhle auf. Dieser odontogene Tumor, der wahrscheinlich bei der Geburt vorhanden war, hatte die Struktur und die Umrisse des Sinus hochgradig verzerrt und die angrenzenden Conchen und das Nasen‐septum verdrängt

    Unfolding the complexities of ER chaperones in health and disease: Report on the 11th International Calreticulin Workshop

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12192-015-0638-4ReviewThe 11th International Calreticulin workshop was held May 15–18, 2015 at New York University School of Medicine-Langone Medical Center, New York. The meeting highlighted many of the new discoveries in the past two years involving the important role of molecular chaperones in physiological and pathological processes. Crucial to the understanding of these disease processes was the role of chaperones in maintaining quality control of protein processing in the endoplasmic reticulum, the importance of Ca2regulation acting through its action in stress-related diseases, and the trafficking of glycoproteins to the cell surface. Central to maintaining healthy cell physiology involves correct ER-associated protein degradation of specific misfolded proteins and information on different mechanisms involved in the degradation of misfolded proteins was revealed. This was a landmark meeting for the chaperone field in terms of new insights into their roles in physiology including the unfolded protein response, innate/adaptive immunity, tissue repair, the functions of calreticulin/chaperones from the cell surface and extracellular environment and in diseases including from neurodegenerative disorders, prion disease, autoimmunity, fibrosis-related disease, the host immune response to cancer and hematologic diseases associated with calreticulin mutations. . The 12th calreticulin workshop is planned for the spring of 2017 in Delphi, Greece
    corecore