790 research outputs found

    Signatures of nonadiabatic O2 dissociation at Al(111): First-principles fewest-switches study

    Full text link
    Recently, spin selection rules have been invoked to explain the discrepancy between measured and calculated adsorption probabilities of molecular oxygen reacting with Al(111). In this work, we inspect the impact of nonadiabatic spin transitions on the dynamics of this system from first principles. For this purpose the motion on two distinct potential-energy surfaces associated to different spin configurations and possible transitions between them are inspected by means of the Fewest Switches algorithm. Within this framework we especially focus on the influence of such spin transitions on observables accessible to molecular beam experiments. On this basis we suggest experimental setups that can validate the occurrence of such transitions and discuss their feasibility.Comment: 13 pages, 7 figure

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Biological nitrogen fixation and nifH gene abundance in deadwood of 13 different tree species

    Get PDF

    Presenting the Compendium Isotoporum Medii Aevi, a multi-isotope database for Medieval Europe

    Get PDF
    Here we present the Compendium Isotoporum Medii Aevi (CIMA), an open-access database gathering more than 50,000 isotopic measurements for bioarchaeological samples located within Europe and its margins, and dating between 500 and 1500 CE. This multi-isotope (δ13C, δ15N, δ34S, δ18O, and 87Sr/86Sr) archive of measurements on human, animal, and plant archaeological remains also includes a variety of supporting information that offer, for instance, a taxonomic characterization of the samples, their location, and chronology, in addition to data on social, religious, and political contexts. Such a dataset can be used to identify data gaps for future research and to address multiple research questions, including those related with studies on medieval human lifeways (i.e. human subsistence, spatial mobility), characterization of paleo-environmental and -climatic conditions, and on plant and animal agricultural management practices. Brief examples of such applications are given here and we also discuss how the integration of large volumes of isotopic data with other types of archaeological and historical data can improve our knowledge of medieval Europe.Background & Summary Methods Data Records Technical Validation Usage Note

    Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited CARS microscopy

    Get PDF
    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction-limit, can be obtained

    An Empirical Analysis of the Current Need for Teleneuromedical Care in German Hospitals without Neurology Departments

    Get PDF
    Indroduction. At present, modern telemedicine methods are being introduced, that may contribute to reducing lack of qualified stroke patient care, particularly in less populated regions. With the help of video conferencing systems, a so-called neuromedical teleconsultation is carried out. Methods. The study included a multicentered, completely standardized survey of physicians in hospitals by means of a computerized on-line questionnaire. Descriptive statistical methods were used for data analysis. Results. 119 acute hospitals without neurology departments were included in the study. The most important reasons for participating in a teleneuromedical network is seen as the improvement in the quality of treatment (82%), the ability to avoid unnecessary patient transport (76%), easier and faster access to stroke expertise (72%) as well as better competitiveness among medical services (67%). The most significant problem areas are the financing system of teleneuromedicine with regard to the acquisition costs of the technical equipment (43%) and the compensation for the stroke-unit center with the specialists' consultation service (31%) as well as legal aspects of teleneuromedicine (27%). Conclusions. This investigation showed that there is a high acceptance for teleneuromedicine among co-operating hospitals. However these facilities have goals in addition to improved quality in stroke treatment. Therefore the use of teleneuromedicine must be also associated with long term incentives for the overall health care system, particularly since the implementation of a teleneuromedicine network system is time consuming and associated with high implementation costs

    CuCo2_{2}S4_{4} Deposited on TiO2_{2}: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution

    Get PDF
    Metallic spinel-type CuCo2_{2}S4_{4} nanoparticles were deposited on nanocrystalline TiO2_{2} (P25®), forming heterostructure nanocomposites. The nanocomposites were characterized in detail by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), nitrogen sorption (BET) and UV/Vis spectroscopy. Variation of the CuCo2_{2}S4_{4}:TiO2_{2} ratio to an optimum value generated a catalyst which shows a very high photocatalytic H2_{2} production rate at neutral pH of 32.3 µmol/h (0.72 mLh1^{–1}), which is much larger than for pure TiO2_{2} (traces of H2_{2}). The catalyst exhibits an extraordinary long-term stability and after 70 h irradiation time about 2 mmol H2_{2} were generated. An increased light absorption and an efficient charge separation for the sample with the optimal CuCo2_{2}S4_{4}:TiO2_{2} ratio is most probably responsible for the high catalytic activity
    corecore