33 research outputs found
Match-related physical performance in professional soccer: Position or player specific?
The purpose of this study was to examine to what extent the physical match performance of professional soccer players is both position and player specific. First, official match data from the 2019/20 German Bundesliga season was used to search for players that met the inclusion criteria of playing a minimum of four entire matches in at least two different playing positions. Overall, 25 players met the criteria prior to the COVID-19 induced break, playing a minimum of eight matches. Second, the physical match performance of these players was analyzed separately for each position they played. The following four parameters were captured: total distance, high-intensity distance, sprinting distance, and accelerations. Third, the 25 players’ physical match performance data was then compared to normative data for each position they played to understand whether players adapted their physical performance (position dependent), or maintained their performance regardless of which position they were assigned to (position independent). When switching the position, the change in physical match performance of the respective players could be explained by 44–58% through the normative positional data. Moreover, there existed large individual differences in the way players adapted or maintained their performance when acting in different positions. Coaches and practitioners should be aware that some professional soccer players will likely incur differences in the composition of physical match performance when switching positions and therefore should pay special consideration for such differences in the training and recovery process of these players
Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen
Global climate change will make it necessary to transform transportation and mobility away from what we know now towards a
sustainable, flexible, and dynamic sector. A severe reduction of fossil-based CO2 emissions in all energy-consuming sectors will
be necessary to keep global warming below 2 °C above preindustrial levels. Thus, long-distance transportation will have to
increase the share of renewable fuel consumed until alternative powertrains are ready to step in. Additionally, it is predicted that
the share of renewables in the power generation sector grows worldwide. Thus, the need to store the excess electricity produced
by fluctuating renewable sources is going to grow alike. The “Winddiesel” technology enables the integrative use of excess
electricity combined with biomass-based fuel production. Surplus electricity can be converted to H2 via electrolysis in a first step.
The fluctuating H2 source is combined with biomass-derived CO-rich syngas from gasification of lignocellulosic feedstock.
Fischer-Tropsch synthesis converts the syngas to renewable hydrocarbons. This research article summarizes the experiments
performed and presents new insights regarding the effects of load changes on the Fischer-Tropsch synthesis. Long-term campaigns
were carried out, and performance-indicating parameters such as per-pass CO conversion, product distribution, and
productivity were evaluated. The experiments showed that integrating renewable H2 into a biomass-to-liquid Fischer-Tropsch
concept could increase the productivity while product distribution remains almost the same. Furthermore, the economic assessment
performed indicates good preconditions towards commercialization of the proposed system
Tnfaip2/exoc3 ‐driven lipid metabolism is essential for stem cell differentiation and organ homeostasis
Abstract Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para‐ortholog, Smed‐exoc3 , abrogates in vivo tissue homeostasis and regeneration—processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2 ‐deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin ( Vim )—a known inducer of LD formation. Smed‐exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl‐L‐carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2 ‐deficient ESCs and organ maintenance in Smed‐exoc3 ‐depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance
A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics
Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10−4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile
Benchmarking whole exome sequencing in the German Network for Personalized Medicine
Introduction
Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis.
Methods
To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics investigating somatic and germline variants, copy-number alteration (CNA), and different complex biomarkers. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. In addition, all raw data were re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability.
Results
The mean positive percentage agreement (PPA) of somatic variant calling was 76% and positive predictive value (PPV) 89% compared a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88% for all and 97% for clinically relevant variants. CNA calls were concordant for 82% of genomic regions. Calls of homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94%, 93%, and 93% respectively. Variability of CNAs and complex biomarkers did not increase considerably using the central pipeline and was hence attributed to wet-lab differences.
Conclusion
Continuous optimization of bioinformatic workflows and participating in round robin tests are recommend
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
The Crowdsourced Replication Initiative: Investigating Immigration and Social Policy Preferences. Executive Report.
In an era of mass migration, social scientists, populist parties and social movements raise concerns over the future of immigration-destination societies. What impacts does this have on policy and social solidarity? Comparative cross-national research, relying mostly on secondary data, has findings in different directions. There is a threat of selective model reporting and lack of replicability. The heterogeneity of countries obscures attempts to clearly define data-generating models. P-hacking and HARKing lurk among standard research practices in this area.This project employs crowdsourcing to address these issues. It draws on replication, deliberation, meta-analysis and harnessing the power of many minds at once. The Crowdsourced Replication Initiative carries two main goals, (a) to better investigate the linkage between immigration and social policy preferences across countries, and (b) to develop crowdsourcing as a social science method. The Executive Report provides short reviews of the area of social policy preferences and immigration, and the methods and impetus behind crowdsourcing plus a description of the entire project. Three main areas of findings will appear in three papers, that are registered as PAPs or in process
Toll-like receptor 7/8 agonists stimulate plasmacytoid dendritic cells to initiate TH17-deviated acute contact dermatitis in human subjects
BACKGROUND: A standardized human model to study early pathogenic events in patients with psoriasis is missing. Activation of Toll-like receptor 7/8 by means of topical application of imiquimod is the most commonly used mouse model of psoriasis. OBJECTIVE: We sought to investigate the potential of a human imiquimod patch test model to resemble human psoriasis. METHODS: Imiquimod (Aldara 5% cream; 3M Pharmaceuticals, St Paul, Minn) was applied twice a week to the backs of volunteers (n = 18), and development of skin lesions was monitored over a period of 4 weeks. Consecutive biopsy specimens were taken for whole-genome expression analysis, histology, and T-cell isolation. Plasmacytoid dendritic cells (pDCs) were isolated from whole blood, stimulated with Toll-like receptor 7 agonist, and analyzed by means of extracellular flux analysis and real-time PCR. RESULTS: We demonstrate that imiquimod induces a monomorphic and self-limited inflammatory response in healthy subjects, as well as patients with psoriasis or eczema. The clinical and histologic phenotype, as well as the transcriptome, of imiquimod-induced inflammation in human skin resembles acute contact dermatitis rather than psoriasis. Nevertheless, the imiquimod model mimics the hallmarks of psoriasis. In contrast to classical contact dermatitis, in which myeloid dendritic cells sense haptens, pDCs are primary sensors of imiquimod. They respond with production of proinflammatory and T17-skewing cytokines, resulting in a T17 immune response with IL-23 as a key driver. In a proof-of-concept setting systemic treatment with ustekinumab diminished imiquimod-induced inflammation. CONCLUSION: In human subjects imiquimod induces contact dermatitis with the distinctive feature that pDCs are the primary sensors, leading to an IL-23/T17 deviation. Despite these shortcomings, the human imiquimod model might be useful to investigate early pathogenic events and prove molecular concepts in patients with psoriasis