567 research outputs found

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    The Kodaira dimension of the moduli of K3 surfaces

    Full text link
    The moduli space of polarised K3 surfaces of degree 2d is a quasi-projective variety of dimension 19. For general d very little has been known about the Kodaira dimension of these varieties. In this paper we present an almost complete solution to this problem. Our main result says that this moduli space is of general type for d>61 and for d=46,50,54,58,60.Comment: 47 page

    The web-based information system for small and medium enterprises of Tomsk region

    Get PDF
    This paper presents the web enabled automated information data support system of small and medium-sized enterprises of Tomsk region. We define the purpose and application field of the system. In addition, we build a generic architecture and find system functions

    Generalized Kac-Moody Algebras from CHL dyons

    Full text link
    We provide evidence for the existence of a family of generalized Kac-Moody(GKM) superalgebras, G_N, whose Weyl-Kac-Borcherds denominator formula gives rise to a genus-two modular form at level N, Delta_{k/2}(Z), for (N,k)=(1,10), (2,6), (3,4), and possibly (5,2). The square of the automorphic form is the modular transform of the generating function of the degeneracy of CHL dyons in asymmetric Z_N-orbifolds of the heterotic string compactified on T^6. The new generalized Kac-Moody superalgebras all arise as different `automorphic corrections' of the same Lie algebra and are closely related to a generalized Kac-Moody superalgebra constructed by Gritsenko and Nikulin. The automorphic forms, Delta_{k/2}(Z), arise as additive lifts of Jacobi forms of (integral) weight k/2 and index 1/2. We note that the orbifolding acts on the imaginary simple roots of the unorbifolded GKM superalgebra, G_1 leaving the real simple roots untouched. We anticipate that these superalgebras will play a role in understanding the `algebra of BPS states' in CHL compactifications.Comment: LaTeX, 35 pages; v2: improved referencing and discussion; typos corrected; v3 [substantial revision] 44 pages, modularity of additive lift proved, product representation of the forms also given; further references adde

    Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac--Moody Lie algebras

    Full text link
    This is a continuation of our "Lecture on Kac--Moody Lie algebras of the arithmetic type" \cite{25}. We consider hyperbolic (i.e. signature (n,1)(n,1)) integral symmetric bilinear form S:M×MZS:M\times M \to {\Bbb Z} (i.e. hyperbolic lattice), reflection group WW(S)W\subset W(S), fundamental polyhedron \Cal M of WW and an acceptable (corresponding to twisting coefficients) set P({\Cal M})\subset M of vectors orthogonal to faces of \Cal M (simple roots). One can construct the corresponding Lorentzian Kac--Moody Lie algebra {\goth g}={\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) which is graded by MM. We show that \goth g has good behavior of imaginary roots, its denominator formula is defined in a natural domain and has good automorphic properties if and only if \goth g has so called {\it restricted arithmetic type}. We show that every finitely generated (i.e. P({\Cal M}) is finite) algebra {\goth g}^{\prime\prime}(A(S,W_1,P({\Cal M}_1))) may be embedded to {\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) of the restricted arithmetic type. Thus, Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type is a natural class to study. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type have the best automorphic properties for the denominator function if they have {\it a lattice Weyl vector ρ\rho}. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type with generalized lattice Weyl vector ρ\rho are called {\it elliptic}Comment: Some corrections in Sects. 2.1, 2.2 were done. They don't reflect on results and ideas. 31 pages, no figures. AMSTe

    Response calculations based on an independent particle system with the exact one-particle density matrix: Excitation energies

    Get PDF
    Adiabatic response time-dependent density functional theory (TDDFT) suffers from the restriction to basically an occupied → virtual single excitation formulation. Adiabatic time-dependent density matrix functional theory allows to break away from this restriction. Problematic excitations for TDDFT, viz. bonding-antibonding, double, charge transfer, and higher excitations, are calculated along the bond-dissociation coordinate of the prototype molecules

    Creating a virtual device for processing the results of sorption measurements in the study of zinc oxide nanorods

    Get PDF
    The work is devoted to the creation of a virtual device (computer program) for processing the results of sorption analysis of nanomaterials, including for estimating the size of nanoparticles based on the specific surface area. The obtained evaluation results were compared with the scanning electron microscopy data. Photocatalytically active zinc oxide samples were chosen as the object of the study

    Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits

    Full text link
    We give a criterion for a Dynkin diagram, equivalently a generalized Cartan matrix, to be symmetrizable. This criterion is easily checked on the Dynkin diagram. We obtain a simple proof that the maximal rank of a Dynkin diagram of compact hyperbolic type is 5, while the maximal rank of a symmetrizable Dynkin diagram of compact hyperbolic type is 4. Building on earlier classification results of Kac, Kobayashi-Morita, Li and Sa\c{c}lio\~{g}lu, we present the 238 hyperbolic Dynkin diagrams in ranks 3-10, 142 of which are symmetrizable. For each symmetrizable hyperbolic generalized Cartan matrix, we give a symmetrization and hence the distinct lengths of real roots in the corresponding root system. For each such hyperbolic root system we determine the disjoint orbits of the action of the Weyl group on real roots. It follows that the maximal number of disjoint Weyl group orbits on real roots in a hyperbolic root system is 4.Comment: J. Phys. A: Math. Theor (to appear

    Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity.</p> <p>Results</p> <p>In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify <it>Salmonella </it>virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in <it>Salmonella </it>or the type III injectisome-related flagellar mechanism.</p> <p>Conclusions</p> <p>Integrating multi-omic datasets from <it>Salmonella </it>mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.</p
    corecore