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Almost all functionals that are currently used in density matrix functional theory have been created
by some a priori ansatz that generates approximations to the second-order reduced density matrix
(2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural
orbital basis) of rather accurate multi-reference configuration interaction expansions for several small
molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals.
The analysis shows that a geminal-like structure is present in the 2RDMs, even though no gemi-
nal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical
correlation contributions are generated by a specific set of double excitations. The corresponding deter-
minants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive
terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and
cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction
emerges from the observation that the “normal” geminal-like exchange between geminals breaks
down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between
bond broken geminals, effectively restoring the often physically correct high-spin configurations on
the bond broken fragments. Both of these corrections have been added to the commonly used anti-
symmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional
Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-
consistent field curves, in which one active orbital is used for each valence electron. Published by AIP
Publishing. https://doi.org/10.1063/1.5018671

I. INTRODUCTION

A key quantity of many-electron theory is the second-
order reduced density matrix (2RDM) Γ(x1, x2; x′1, x′2),

Γ(x1, x2; x′1, x′2) = N(N − 1)
∫
Ψ(x1, x2, x3, . . . , xN )

× Ψ∗(x′1, x′2, x3, . . . , xN )dx3 . . . dxN , (1)

which determines the electronic energy Ee,

Ee = T + V + W = −
1
2

∫
∇2

r′γ(x, x′)|x′=xdx

+
∫
vext(r)ρ(x)dx +

1
2

∫
Γ(x1, x2)

r12
dx1dx2. (2)

In (1), Ψ is the wave function of an N-electron system; in
(2), the electron-electron interaction energy W is expressed
through the diagonal part of the 2RDM, the pair density
Γ(x1, x2) (x stands for both spatial r and spin s coordinates). In
its turn, the kinetic energy T is expressed through the 1RDM
γ(x, x′), the integral of the 2RDM

γ(x1, x′1) =
1

N − 1

∫
Γ(x1, x2; x′1, x′2)|x′2=x2 dx2, (3)

while the electron-nuclear energy V is calculated with the
electron density ρ(x), the diagonal part of γ(x, x′). Then, the
analysis of the 2RDMs and their contributions to Ee obtained

from highly correlated wave functions of prototype systems is
of importance for the conceptual description of the electronic
structure as well as for the development and assessment of
various approximate approaches.

A useful way to analyze and describe electron correlation
is based on the expansion of the 2RDM in terms of the natural
orbitals (NOs) φi inserted in the expression for W,

W =
1
2

∑
ijkl

Γijkl(ij |kl). (4)

The NOs are the eigenfunctions of the 1RDM with the
occupation numbers (ONs) (0 ≤ ni ≤ 1) as the eigenvalues

γ(r, r′) =
∑

i

2niφi(r)φ∗i (r′), (5)

and these orbitals are especially suitable for the description of
electron correlation (see Sec. III).

The expansion (4) obtained from highly correlated wave
functions can serve as an important benchmark for density
matrix functional theory (DMFT),1–17 in which the matrix
elements Γijkl are approximated as functions F of the ONs

WDMFT [{φ}, {n}] =
∑
ijkl

Fijkl({n})(ij |kl). (6)

The DMFT development mainly draws its inspiration from
W obtained with certain simple types of wave functions, the
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most important 2RDM matrix elements Γijkl of which can be
explicitly expressed through the ONs. Other sources for the
functionals include 2RDM inequality restrictions, modeling
of the exchange-correlation hole, and simple tensor expan-
sions.4,6,18 In all cases, one uses some kind of ansatz in order
to produce a closed form for the functional. Current DMFT
functionals in the literature belong almost exclusively to the
JKL (non Coulomb/Exchange like)-only type,15,19

W JKL[{φ}, {n}] = 2
∑

kl

FJ (nk , nl)Jkl +
∑

kl

FK (nk , nl)Kkl

+
∑

kl

FL(nk , nl)Lkl, (7)

i.e., only the well-known J and K types of two-electron
integrals,

Jkl =

∫
φk(r1)φ∗k(r1)φl(r2)φ∗l (r2)

|r1 − r2 |
dr1dr2 = (kk |ll), (8)

Kkl =

∫
φk(r1)φ∗l (r1)φl(r2)φ∗k(r2)

|r1 − r2 |
dr1dr2 = (kl |lk), (9)

and also the so-called L integrals,

Lkl =

∫
φk(r1)φ∗l (r1)φk(r2)φ∗l (r2)

|r1 − r2 |
dr1dr2 = (kl |kl), (10)

enter the expression (7) for W JKL[{φ}, {n}]. The most general
type of configuration interaction (CI) wave function that only
contains these types of two electron integrals in its energy
expression is the so-called doubly occupied CI (DOCI) wave
function ΨDOCI ,20–24

Ψ
DOCI = c0Φ0 +

∑
i

∑
a

caā
iī
Φ

aā
iī

+
∑

i,j(,i)

∑
a,b(,a)

caābb̄
iījj̄
Φ

aābb̄
iījj̄

+ · · · .

(11)
For this particular wave function, the diagonal 2RDM ele-
ments can be directly expressed in terms of the ONs (FJ (nk , nk)
= nk).25 However, there is no closed expression for the other
2RDM elements. This leads us to a wave function based on a
geminal approach,24,26–29 in which all 2RDM elements can be
expressed in terms of the ONs. The so-called antisymmetrized
product of strongly orthogonal geminals (APSG) wave func-
tion is by definition a subset of the DOCI wave function. While
DOCI places no restrictions on which orbitals can be doubly
occupied in the same determinant, APSG only allows for a
single doubly occupied orbital from each geminal set in each
determinant when one uses the NO basis. The APSG wave
function is expressed as follows:

Ψ
APSG(x1, . . . , xN ) = Â

N
2∏

g=1

ψLS
g (x2g−1, x2g). (12)

It employs the two-electron wave functions ψLS
g of the Löwdin

and Shull (LS)1 type, the CI coefficients of which are expressed
through the ONs

ψLS
g (x1, x2) =

√
ni |φi(x1)φ̄i(x2)|

−
∑
a∈Sg

√
na |φa(x1)φ̄a(x2)|, i ∈ Sg, (13)

of the NOs assigned to the geminal ψLS
g . In (13), which is a

paradigmatic case in DMFT, φi is the strongly occupied NO
(i ≤ N /2, ni > 0.5), which specifies the geminal, while the

weakly occupied NOs φa (a ≥ N /2, na < 0.5) belong, together
with φi, to the subset Sg of the NOs assigned to the geminal
ψLS

g . Note that the usual empirical convention of fixing the
+ and� signs of the coefficients has been used. The ONs within
each geminal set sum up to two electrons. The energy WAPSG

of ΨAPSG,

WAPSG[{φ}, {n}] =

N
2∑
g

WLS
g [{φ}, {n}] +

N
2∑

g<h

WHF
gh [{φ}, {n}],

(14)
is naturally subdivided into the intrageminal LS type

WLS
g [{φ}, {n}] =

∑
j∈Sg

njJjj − 2
∑
a∈Sg

√
ninaLia

+
∑

(a,b,a)∈Sg

√
nanbLab, i ∈ Sg (15)

and intergeminal Hartree-Fock (HF) type

WHF
gh = 4

∑
p∈Sg

∑
q∈Sh

npnq[Jpq −
1
2

Kpq] (16)

contributions. One of the most challenging aspects of this
functional in practical calculations is the subdivision of the
available space of one-electron functions (NOs in this case)
into disjoint sets belonging to the geminals. It is usually easy
to pair a single weakly occupied orbital NO φa to a strongly
occupied NO; however, adding more orbitals to the sets is
often ambiguous and computationally inefficient.27,30 So most
functionals employed in the field put heavy restrictions on the
number of orbitals in the sets. In the aforementioned simplest
case of the perfect pairs (PPs), Sg contains just a single weakly
occupied NO. Piris’ NO functional PNOF531 is identical to
this simplest PP case of the APSG functional.32 Unfortunately,
even APSG’s bigger brother DOCI, which does not have any
set restrictions at all, is often only able to describe 20%-35%
of the dynamical correlation energy (see Sec. III and Refs. 24,
33, and 34). So the APSG ansatz needs to be augmented. To
this effect, different types of perturbative treatment have been
proposed in the literature. These include the direct applica-
tion of the perturbation theory,35–38 the approach based on the
fluctuation-dissipation theorem,16,39 and the addition of the
correction terms developed within the coupled cluster (CC)
theory.40,41 Non-perturbative treatments include the PNOF6
and PNOF7 functionals and the extended Löwdin-Shull (ELS)
series of functionals.15,17,42 Note that all of these functionals
are still strictly JKL only. The PNOF6 functional generates
small improvements over the PNOF5 functional, while the
PNOF7 functional incorporates a multibond correction, like
the one that will be described below. The ELS series of func-
tionals were developed for quasi-two-electron systems and will
not work for generic many-electron systems without modifica-
tions. One could in principle try to modify the functionals using
techniques that were used in the generation of the original
functionals and optimize them to obtain the desired results.

In this paper, we follow a different route. A definitive
assessment of how to further develop intergeminal correlation
within a nonperturbative DMFT framework can be based on
the analysis of the energy expansion (4) obtained from near
full-CI wave functions for prototype molecules. This analysis
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will reveal to which extent the leading terms of the expan-
sion (4) resemble those for the simple wave functions, such
as (11) and (12). Then, the important terms which are present
in the accurate expansion (4), but are missing in the simpli-
fied expressions, will show the way for improvement of the
approximate approaches.

In this paper, the benchmark 2RDM energy expansion (4)
is obtained with a high quality multi-reference CI with single,
double, triple, and quadruple excitations (MR-CISDTQ) for
the prototype series of the 10-electron molecules CH4, NH3,
H2O, and HF with single bonds as well as for the N2 molecule
with a triple bond. Computational details are given in Sec. II.
It is shown in Sec. III that the MR-CISDTQ 2RDM energy
expansion contains (without it having been imposed) the basic
geminal structure with each PP characterized by a bond-
ing/stabilizing NO φi and an antibonding/destabilizing NO φa.
The leading non-APSG terms of the obtained expansion rep-
resent attractive intergeminal interactions of dispersion type,
well known from van der Waals interactions: double excita-
tions consisting of single intrageminal excitations φi → φa

on geminal A and φj → φb on geminal B. These terms pro-
vide the description of dynamical correlation of electrons of
different closed shells (geminals), and they give rise to dis-
persive multipole-multipole non-JKL terms. Due to the prox-
imity of the geminals, these dispersion energies are large and
generate roughly half of the PP space dynamical correlation
at equilibrium distance. This proves that it is imperative to
augment the JKL functionals with these non-JKL terms in
order to obtain a correct description of intergeminal dynamical
correlation.

A different correction that is essential to obtain proper
dissociation of double or triple bonds emerges from the anal-
ysis of the 2RDM of N2 at the dissociation limit. Additional
non-JKL elements surface that use 2 orbitals from each of the
bond broken geminals. Upon closer inspection, it is clear that
these terms effectively double the local exchange at each atom
in order to have the physically correct local high spin config-
uration. This correction has a size of roughly 0.105 hartree,
making it mandatory for most multibond dissociation descrip-
tions. In Sec. IV, a new functional that includes both of these
corrections is proposed. Calculations show that it is capable
of reproducing Complete Active Space Self Consistent Field
(CASSCF) calculations, in which the active space contains as
many orbitals as there are valence electrons. In Sec. V, the
conclusions are drawn.

II. COMPUTATIONAL DETAILS

All wave function calculations have been performed using
the 2012 version of the GAMESS-US program,43 while all
DMFT calculations have been performed with our homebrew
DMFT program using the GAMESS-US data files as input.
The (Cartesian) aug-cc-pVDZ basis has been used for all cal-
culations (9 functions for H and 25 functions for the 2nd row
elements), unless specified otherwise. This basis is far from
being complete, but it is good enough considering the fact
that the main calculations of interest in this paper only use
a very small active space. The visualizations were generated
with the wxmacmolplt program.44 All calculations presented

use natural orbitals (generated by other accurate calculations)
as starting orbitals, and the core orbitals are kept at full occu-
pancy in all calculations. The APSG-PP calculations are APSG
calculations, in which each geminal consists of a perfect pair
(PP) of 2 orbitals. All CASSCF, DOCI, and APSG calculations
are used in conjunction with orbital optimization (full orbital
Hessian). We have performed calculations on the CH4, NH3,
H2O, HF, and N2 molecules. The results of the MR-CI cal-
culations for the 10-electron molecules CH4, NH3, H2O, and
HF with single bonds display the same qualitative trends; as a
result, we will only present the analysis data for the H2O and
N2 molecules in Sec. III. The dissociation curves are displayed
for all of these molecules in Sec. IV.

III. ANALYSIS OF THE 2RDM ELEMENTS

In this section, the analysis results for the H2O and N2

molecules will be presented for both the equilibrium distance
and the dissociation limit (defined as the geometry in which
the broken bond has 3 times the equilibrium bond distance).
We will look at the 2RDM elements in the NO basis (generated
by MR-CI calculations) and at the effect on the total energy
of restricting the expansion space of determinants. We will
begin with the latter since this gives us a lot of insight into the
limitations of the APSG and DOCI methods.

A. Analysis of the (correlation) energies obtained
with various CI expansions

The energies and natural occupation numbers of the
selected systems are shown in Tables I–IV. The correlation
energy of the MR-CI calculations using all orbitals in the basis
set (it still uses a frozen core occupation, as for all calculations
in this paper) is defined as 100% of the correlation. This is of
course not completely correct since it is not a full-CI calcula-
tion. However, it should contain (95+%) of the full-CI correla-
tion energy,45 which is adequate for our intents and purposes.
The equilibrium H2O results show that one can apply a heavy
truncation of the active space and still obtain high percentage
of correlation. One can even obtain 50+% of the correlation by
using a perfect pair like active space for the CASSCF calcu-
lations [CASSCF(8,8) for H2O and CASSCF(10,10) for N2].
At the same time it is quite clear that the DOCI wave function
is only capable of producing 28% when using the same PP
active space, only being able to gain an additional 11% when
19 additional orbitals are added to the active space, with the
first 5 added generating the majority of the extra correlation.
In both cases, the amount of charge flowing to the “virtual”
orbitals for the APSG and PP expansions is just half of the
charge that flows in case of the properly correlated CI expan-
sions. The APSG-PP result is very similar to the DOCI-PP
result, indicating that the additional non-geminal like terms
in DOCI are not important for this system. The equilibrium
results for the N2 molecule paint a similar picture: DOCI, and
by extension APSG, is not able to describe the majority of
the dynamical correlation. The results for the (single) bond
broken H2O geometry show that a CASSCF(2,2) calculation
can obtain 50% of the total correlation. This correlation can be
considered as being fully non-dynamical, so the other 50% rep-
resents dynamical correlation. According to this principle, the
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TABLE I. Energies (hartree) of H2O at equilibrium distance and natural occupations for various active spaces. Hartree-Fock energy: �76.041 95. Occupation
numbers are for orbitals (summed over spin orbitals). Only the largest occupations are shown. The last 3 rows show the summed occupations of subsets of weakly
occupied NOs, i.e., the charge that is transferred from the highly occupied orbitals due to correlation.

Method MR-CISDTQ MR-CISDTQ MR-CISDTQ MR-CISDTQ CASSCF(8,8) DOCI DOCI APSG-PP

Active orbs 2-43 2-28 2-14 2-9 2-9 2-28 2-9 2-9

Energy �76.2775 �76.2756 �76.2397 �76.1656 �76.1699 �76.1343 �76.1085 �76.1072

Correlation (%) 100.0 99.2 84.0 52.5 54.3 39.2 28.3 27.7

1 2 2 2 2 2 2 2 2
2 1.9816 1.9817 1.9845 1.9886 1.9877 1.9897 1.9909 1.9912
3 1.9621 1.9624 1.9664 1.9768 1.9777 1.9882 1.9909 1.9912
4 1.9585 1.9589 1.9641 1.9734 1.9757 1.9803 1.9823 1.9824
5 1.9584 1.9585 1.9639 1.9733 1.9750 1.9800 1.9823 1.9824
6 0.0300 0.0300 0.0284 0.0268 0.0249 0.0169 0.0181 0.0176
7 0.0280 0.0280 0.0267 0.0259 0.0244 0.0168 0.0181 0.0176
8 0.0228 0.0227 0.0220 0.0222 0.0216 0.0090 0.0087 0.0088
9 0.0143 0.0142 0.0131 0.0130 0.0130 0.0080 0.0087 0.0088
10 0.0074 0.0074 0.0066 0.0017
11 0.0070 0.0070 0.0064 0.0017
12 0.0069 0.0069 0.0063 0.0016
13 0.0061 0.0061 0.0058 0.0016
14 0.0061 0.0060 0.0057 0.0016
15 0.0014 0.0013 0.0013

∆6-9 0.0950 0.0949 0.0902 0.0879 0.0839 0.0507 0.0536 0.0528
∆10-14 0.0335 0.0334 0.0309 0.0082
∆15+ 0.0109 0.0102 0.0029

CASSCF(8,8) wave function generates 40% of the dynamical
correlation (70% of the total correlation), the APSG-PP gener-
ates 24%, and the DOCI is only able to increase this up to 34%

when it uses a larger active space. So the same picture is still
correct in the dissociation limit as well. The bond broken N2

structure shows a very unexpected result. The CASSCF(6,6)

TABLE II. Energies (hartree) for H2O with a single bond broken (R = 3Re) and natural occupations for various active spaces. Hartree-Fock energy: �75.707 51.
Occupation numbers are for orbitals (summed over spin orbitals). Only the largest occupations are shown. The last 3 rows show the summed occupations of
subsets of weakly occupied NOs, i.e., the charge that is transferred from the highly occupied orbitals due to correlation.

Method MR-CISDTQ MR-CISDTQ MR-CISDTQ CASSCF(2,2) CASSCF(8,8) CASSCF(8,9) DOCI DOCI APSG-PP

Active orbs 2-43 2-15 2-9 5-6 2-9 2-10 2-28 2-9 2-9

Energy �76.0887 �76.0659 �75.9771 �75.9007 �75.9788 �76.0000 �75.9646 �75.9448 �75.9441

Correlation (%) 100.0 94.0 70.7 50.7 71.2 76.7 67.4 62.2 62.1

1 2 2 2 2 2 2 2 2 2
2 1.9781 1.9800 1.9899 2.0000 1.9899 1.9876 1.9908 1.9925 1.9926
3 1.9646 1.9684 1.9801 2.0000 1.9807 1.9794 1.9901 1.9925 1.9926
4 1.9588 1.9638 1.9734 2.0000 1.9747 1.9740 1.9791 1.9817 1.9818
5 1.1814 1.1733 1.1812 1.1538 1.1795 1.1721 1.1581 1.1558 1.1535
6 0.8109 0.8200 0.8189 0.8462 0.8206 0.8218 0.8419 0.8443 0.8465
7 0.0301 0.0288 0.0271 0.0258 0.0261 0.0176 0.0187 0.0182
8 0.0212 0.0205 0.0193 0.0188 0.0199 0.0073 0.0073 0.0074
9 0.0117 0.0108 0.0101 0.0101 0.0110 0.0068 0.0073 0.0074
10 0.0088 0.0084 0.0081 0.0018
11 0.0060 0.0055 0.0017
12 0.0059 0.0055 0.0013
13 0.0053 0.0052 0.0010
14 0.0052 0.0052 0.0009
15 0.0048 0.0046 0.0007
16 0.0012 0.0002

∆6-9 0.8739 0.8801 0.8754 0.8462 0.8753 0.8788 0.8736 0.8776 0.8795
∆10-15 0.0360 0.0344 0.0081 0.0074
∆16+ 0.0072 0.0002
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TABLE III. Energies (hartree) of N2 at equilibrium distance and natural occupations for various active spaces. Hartree-Fock energy: �108.961 10. Only the
largest occupations are shown. The last 3 rows show the summed occupations of subsets of weakly occupied NOs, i.e., the charge that is transferred from the
highly occupied orbitals due to correlation.

Method MR-CISD MR-CISD MR-CISD MR-CISD CASSCF(10,10) DOCI DOCI APSG-PP

Active orbs 3-50 3-24 3-19 3-12 3-12 3-24 3-12 3-12

Energy �109.2980 �109.2776 �109.2398 �109.1430 �109.1447 �109.0819 �109.0599 �109.0511

Correlation (%) 100.0 93.9 82.7 54.0 54.5 35.8 29.3 26.7

1 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
3 1.9809 1.9819 1.9860 1.9900 1.9900 1.9953 1.9956 1.9957
4 1.9602 1.9622 1.9671 1.9786 1.9790 1.9864 1.9880 1.9933
5 1.9562 1.9581 1.9628 1.9771 1.9788 1.9864 1.9880 1.9933
6 1.9185 1.9222 1.9259 1.9401 1.9420 1.9405 1.9401 1.9373
7 1.9183 1.9220 1.9258 1.9400 1.9420 1.9405 1.9401 1.9373
8 0.0776 0.0757 0.0722 0.0668 0.0638 0.0612 0.0652 0.0627
9 0.0776 0.0757 0.0722 0.0668 0.0638 0.0612 0.0652 0.0627
10 0.0229 0.0225 0.0212 0.0204 0.0202 0.0065 0.0065 0.0067
11 0.0153 0.0145 0.0148 0.0128 0.0127 0.0065 0.0065 0.0067
12 0.0098 0.0093 0.0092 0.0074 0.0076 0.0038 0.0046 0.0043
13 0.0076 0.0074 0.0071 0.0019
14 0.0072 0.0070 0.0068 0.0019
15 0.0071 0.0069 0.0064 0.0014
16 0.0067 0.0067 0.0063 0.0014
17 0.0067 0.0067 0.0063 0.0012
18 0.0054 0.0052 0.0049 0.0012
19 0.0054 0.0052 0.0049 0.0006
20 0.0023 0.0022 0.0006
21 0.0023 0.0022 0.0006
22 0.0022 0.0022 0.0006
23 0.0022 0.0022 0.0002
24 0.0019 0.0018 0.0002
25 0.0012

∆8-12 0.2030 0.1977 0.1897 0.1741 0.1681 0.1392 0.1480 0.1431
∆13-24 0.0569 0.0558 0.0427 0.0118
∆25+ 0.0060

calculation, which should account for all non-dynamical cor-
relation, covers 81% of the total correlation energy, while the
DOCI and APSG calculations are only able to obtain 71%
of the correlation energy. So in addition to not being able to
generate the majority of the dynamical correlation, they are
also not able to generate all of the non-dynamical correlation
for this system. As we will show in the N2 2RDM analysis
below, this discrepancy is caused by the incorrect description
of exchange between the unpaired electrons on the (atomic)
fragments.

B. Analysis of the 2RDM elements and the type
of correlation they embody

We now proceed with the 2RDM analysis in order to gain
some more understanding of the failures of DOCI/APSG. The
total number of 2RDM elements scales quartically with the
basis set size, so only a small selection can be shown here.
Our initial analysis shows that a perfect pairing like gemi-
nal structure is present in the PP space of all of our selected
molecules. In order to demonstrate this, and to show the most
important deviation from pure geminals that is present in all
of our systems, we show all 2RDM elements between 3 of

these perfect pairs in the H2O equilibrium structure (Table V).
In order to understand the physical relevance of some of the
2RDM elements, it is best to visualize the natural orbitals
used in these geminals. The strongly occupied NOs φ3, φ4,
and φ5 (the NOs are ordered according to their decreasing
occupations) and their associated lowly occupied orbitals are
shown in Fig. 1. The φ5 NO is the out of phase combina-
tion of bonding character in the regions of the individual O–H
bonds, the φ4 NO is the related axial combination, and NO
φ3 represents the lone pair of the π type. The corresponding
lowly occupied orbitals located in the same spatial region as
their highly occupied counterpart, only having more nodes,
as is required in order to stay orthogonal and to have max-
imal intrageminal correlation (large L integrals). As already
mentioned before, the geminal structure is easily visible. The
intrageminal blocks basically just contain diagonal repulsion
terms and the (attractive) dynamical correlation. The Coulomb
interaction between orbitals in the same geminal set is nearly
absent. This is one of the biggest indicators of geminal behav-
ior since these terms can only be generated by determinants
that contain both orbitals. Such determinants are completely
absent in a proper APSG wave function. The intergeminal
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TABLE IV. Energies (hartree) of N2 after bond breaking (R = 3Re) and natural occupations for various active
spaces. Hartree-Fock energy: �107.976 88. The occupation numbers are for orbitals (summed over spin orbitals).
Only the largest occupations are shown. The last 3 rows show the summed occupations of subsets of weakly
occupied NOs, i.e., the charge that is transferred from the highly occupied orbitals due to correlation.

Method MR-CISD MR-CISD CASSCF(10,10) CASSCF(6,6) DOCI APSG-PP
Active orbs 3-50 3-28 3-12 5-10 3-12 3-12
Energy �108.9737 �108.9656 �108.8019 �108.7805 �108.6832 �108.6831
Correlation (%) 100.0 99.2 82.8 80.6 70.9 70.8

1 2 2 2 2 2 2
2 2 2 2 2 2 2
3 1.9658 1.9673 1.9943 2.0000 1.9982 1.9982
4 1.9640 1.9658 1.9941 2.0000 1.9982 1.9982
5 1.0835 1.0820 1.0780 1.0762 1.1413 1.1369
6 1.0114 1.0111 1.0146 1.0143 1.0268 1.0260
7 1.0114 1.0111 1.0146 1.0143 1.0268 1.0260
8 0.9768 0.9771 0.9854 0.9857 0.9732 0.9740
9 0.9768 0.9771 0.9854 0.9857 0.9732 0.9740
10 0.9049 0.9064 0.9222 0.9238 0.8588 0.8631
11 0.0125 0.0121 0.0060 0.0018 0.0018
12 0.0105 0.0102 0.0055 0.0018 0.0018
13 0.0062 0.0062

∆8-12 2.8815 2.8829 2.9045 2.8952 2.8088 2.8147
∆13+ 0.0824 0.0797

blocks show both true geminal terms and a correlation cor-
rection. The normal APSG terms consist of the Coulomb
repulsion and exchange interaction between the different gem-
inals. The Coulomb/exchange ratio of the interactions between
the highly occupied orbitals is very close to the closed shell
APSG/HF value of 2. The interactions between lowly occupied
orbitals only deviate a little bit from this ratio. The ratio has a
much larger deviation in favor of the exchange interaction for
highly occupied/lowly occupied combinations, indicating that
some amount of intergeminal correlation is expressed through
exchange integrals. Even though these exchange 2RDMs have
an appreciable value, their integrals are very small, resulting
in a diminutive contribution to the intergeminal correlation
energy. The majority of the intergeminal correlation within
the PP space is provided by a non-JKL 2RDM element (bold
in Table V) whose integral is given by

Dia,jb =

∫
φi(r1)φ∗a(r1)φj(r2)φ∗b(r2)

|r1 − r2 |
dr1dr2, i, a ∈ Sg; j, b ∈ Sh.

(17)

So the orbitals within the same geminal are multiplied, effec-
tively creating a multipolar charge distribution [a product of
an orbital with itself only gives the density, multiplying dif-
ferent orbitals with a different nodal structure in the same
spatial region (forced by orthogonality) generates areas of
positive and negative charge]. These multipolar charge dis-
tributions interact with each other and generally lower the
electron-electron interaction energy. This is very similar to
how intrageminal correlation works when one uses the LS (NO
basis) expansion of the geminal. In that case, the correlation is
governed by exchange (like) L integrals between the different
orbitals in the geminal. The energy lowering terms generally
involve integrals between the highly occupied orbital (these
orbitals generally have the lowest possible number of nodes

for their given symmetry at their spatial location) and the lowly
occupied orbitals. The products involving the orbitals also gen-
erate multipolar charge distributions; the only difference is the
fact that the energy is lowered by allowing the charge distribu-
tion to interact with a copy of itself that uses the other spatial
coordinate. Exchange integrals that use orbitals on different
and spatially distant geminals are not very capable of gen-
erating an adequate amount of correlation. As we have seen
earlier, this is caused by the fact that there is little to no over-
lap between these geminals, resulting in a vanishing exchange
integral. This explains why DOCI and APSG are incapable
of describing the majority of dynamical correlation. It is very
clear that this new non-JKL dispersive interaction (whose inte-
gral has 1/R3 long range scaling for localized geminals due to
the orthogonality of the orbitals) has to be introduced to DMFT
functionals in order to generate the missing dynamical corre-
lation in a more physical way. In principle, the knowledge of
this 2RDM element is enough for our purposes. However, in
the interest of showing how this arises in wave functions, we
will look at the largest CI coefficients of the wave function (see
Table VI). The highest CI coefficient is used for the single ref-
erence HF like determinant. The next 3 determinants describe
the intrageminal correlation of the 3 geminals we have cov-
ered in the previous paragraph. The final 10 determinants are
all generating the multipole-multipole terms (only a short list is
used in order to save space); this can be observed if one expands
the sandwiching of the Hamiltonian between the reference
determinant and these determinants using the Slater-Condon
rules. It is interesting to note that all of these off-diagonal dou-
bly excited determinants are generated by simultaneous single
excitations within two different geminals. The importance of
these terms was also stressed in perturbative approaches.35,40

The value of the present findings stems from the fact that
the importance of the elements has been determined by
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TABLE V. Integrals (hartree) and their associated 2RDM elements and prod-
ucts for the 3 major geminals in equilibrium H2O. The first 3 blocks refer to
intergeminal interactions, and the last 3 blocks are intrageminal terms.

Classification A(1) B(1) C(2) D(2) Integral 2RDM Product

Non-JKL 5 4 7 6 0.057 �0.065 �0.004
Non-JKL 6 4 7 5 0.042 �0.006 0.000
Non-JKL 6 5 7 4 0.123 �0.206 �0.025
J 4 4 5 5 0.613 3.848 2.360
J 4 4 6 6 0.616 0.045 0.028
J 5 5 7 7 0.611 0.043 0.026
J 6 6 7 7 0.620 0.008 0.005
K/L 5 4 5 4 0.052 �1.908 �0.099
K/L 6 4 6 4 0.053 �0.076 �0.004
K/L 7 5 7 5 0.049 �0.070 �0.003
K/L 7 6 7 6 0.087 0.010 0.001

Non-JKL 5 3 8 6 0.021 �0.044 �0.001
Non-JKL 6 3 8 5 0.014 0.073 0.001
Non-JKL 6 5 8 3 0.116 �0.208 �0.024
J 3 3 5 5 0.614 3.852 2.366
J 3 3 6 6 0.611 0.052 0.032
J 5 5 8 8 0.527 0.039 0.020
J 6 6 8 8 0.537 0.006 0.003
K/L 5 3 5 3 0.029 �1.918 �0.057
K/L 6 3 6 3 0.019 �0.046 �0.001
K/L 8 5 8 5 0.014 �0.029 0.000
K/L 8 6 8 6 0.021 0.002 0.000

Non-JKL 4 3 8 7 0.018 �0.041 �0.001
Non-JKL 7 3 8 4 0.009 0.087 0.001
Non-JKL 7 4 8 3 0.111 �0.208 �0.023
J 3 3 4 4 0.631 3.853 2.431
J 3 3 7 7 0.606 0.047 0.028
J 4 4 8 8 0.541 0.038 0.021
J 7 7 8 8 0.532 0.006 0.003
K/L 4 3 4 3 0.032 �1.918 �0.062
K/L 7 3 7 3 0.030 �0.057 �0.002
K/L 8 4 8 4 0.018 �0.033 �0.001
K/L 8 7 8 7 0.027 0.002 0.000

Jdiagonal 3 3 3 3 0.726 0.969 0.704
Jdiagonal 8 8 8 8 0.541 0.004 0.002
J 3 3 8 8 0.607 0.016 0.010
K/L 8 3 8 3 0.157 �0.107 �0.017
One electron 3 3 �6.951
One electron 8 8 �5.206

Jdiagonal 4 4 4 4 0.676 0.966 0.654
Jdiagonal 7 7 7 7 0.670 0.005 0.004
J 4 4 7 7 0.631 0.026 0.016
K/L 7 4 7 4 0.143 �0.113 �0.016
One electron 4 4 �6.803
One electron 7 7 �5.913

Jdiagonal 5 5 5 5 0.670 0.966 0.648
Jdiagonal 6 6 6 6 0.672 0.006 0.004
J 5 5 6 6 0.650 0.025 0.016
K/L 6 5 6 5 0.166 �0.126 �0.021
One electron 5 5 �6.736
One electron 6 6 �6.025

observing a nearly exact and fully variational approach. One of
the benefits of using these elements in a DMFT functional over
using them in a perturbative fashion is the fact that they are a

part of the system that is optimized. The pure geminal excita-
tions only generate roughly half of the natural occupancy, so
including the additional interactions could potentially lead to
natural orbital shapes that show a closer resemblance to the
exact ones.

C. Single bond dissociation in H2O

We move on to the 2RDM analysis of the H2O molecule,
in which one bond has been dissociated. Instead of show-
ing all the interactions, only the significant non-JKL elements
are shown (Table VII). The intergeminal interaction between
orbital pairs belonging to the same geminal 2/9, 3/8 and 4/7
are present, just as was the case at equilibrium distance (the
2/9 interaction at equilibrium distance was not shown for
brevity’s sake). However, the interaction between the bond bro-
ken orbital pair 5/6 and the other pairs is not present. Instead,
the orbital pairs 5/10 and 6/10 are used to generate dynami-
cal intergeminal correlation between the bond broken geminal
and the remaining ones. The newly introduced orbital (10) is
a p type orbital at each of the fragments directed along the
broken bond. This additional orbital is required due to the fact
that the contributions of a regular off-diagonal doubly excited
determinant (containing a single occupied orbital 5 and 6 and
two singly occupied orbitals from another geminal) would be
quenched in the dissociation limit because of the opposing
signs of the coefficients of the two reference determinants with
which it would interact. The use of an additional orbital has
also been observed in selected equilibrium cases. However, in
most cases, the assignment of these additional orbitals to the
geminal sets is only clear when one has (partially) dissoci-
ated bonds. In order to avoid ambiguous assignment prob-
lems, these additional orbitals will not be considered here any
further.

D. Multiple bond dissociation in N2

Proceeding with the analysis of the N2 molecule, we
note that the geminal structure is somewhat less clear for the
N2 molecule. At equilibrium distance, the π-bonding frontier
NOs φ6 and φ7 have geminal-like behavior, as can be seen
in Tables VIII and IX. But the pairing is not perfect for the
other 3 geminals, as is evidenced by the Coulomb to exchange
ratio between elements of these geminals. Nonetheless, the
importance of the non-JKL multipole-multipole terms for this
system is very prominent and similar to the H2O molecule.

The dissociated N2 system, however, has deviant behavior.
Several new types of non-JKL elements appear, as is seen in
Table X. These additional elements are the coordinate swapped
companions of the dispersive interactions. The integral value
of these elements is equal to the corresponding intergeminal
exchange integrals. In order to understand this, we are going
to look at a model system that consists of two geminals, a σ
bond (2× S) and a π bond (2× py, P in the equations), between
equivalent atoms A and B. The APSG intergeminal energy is
given by the following expression:

Eσπ = 4nσg nπu Jσgπu − 2nσg nπu Kσgπu

+ 4nσu nπu Jσuπu − 2nσu nπu Kσuπu

+ 4nσg nπg Jσgπg − 2nσg nπg Kσgπg

+ 4nσu nπg Jσuπg − 2nσu nπg Kσuπg , (18)
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FIG. 1. Visualizations of important NOs for equilibrium
H2O; the occupation numbers are in parentheses. (a) NO
3 (1.9621). (b) NO 8 (0.0228). (c) NO 4 (1.9585). (d) NO
7 (0.0280). (e) NO 5 (1.9584). (f) NO 6 (0.0300).

TABLE VI. Highest CI coefficients and their associated determinants for
H2O; the core has been excluded since it is always occupied.

α occ β occ Coefficient

2 3 4 5 2 3 4 5 0.9657
2 3 4 6 2 3 4 6 �0.0636
2 4 5 8 2 4 5 8 �0.0573
2 3 5 7 2 3 5 7 �0.0567
2 3 4 6 2 3 5 7 0.0445
2 3 5 7 2 3 4 6 0.0445
2 3 4 6 2 4 5 8 �0.0379
2 4 5 8 2 3 4 6 �0.0379
2 3 5 7 2 4 5 8 0.0363
2 4 5 8 2 3 5 7 0.0363
2 3 4 5 2 5 7 8 0.0289
2 5 7 8 2 3 4 5 0.0289
2 3 4 5 2 4 6 8 �0.0277
2 4 6 8 2 3 4 5 �0.0277

where

σg =
1
√

2
(SA + SB),

σu =
1
√

2
(SA − SB),

πu =
1
√

2
(PA + PB),

πg =
1
√

2
(PA − PB).

At infinite distance, we get the following expressions for the
integrals (note that all of the J integrals have one common
value, and all of the K integrals have one common value at
infinite distance):

Jσgπu ≈
1
4

(JSAPA + JSBPB ), (19)
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TABLE VII. Largest absolute non-JKL contributions to the energy (hartree)
for H2O with a single bond broken.

A(1) B(1) C(2) D(2) Integral 2RDM Product

8 3 7 4 0.1141 �0.2239 �0.0256
9 2 8 3 0.1066 �0.1410 �0.0150
9 2 7 4 0.0920 �0.1245 �0.0115
10 5 8 3 0.0790 �0.0925 �0.0073
10 5 7 4 0.0774 �0.0923 �0.0071
10 6 8 3 0.0849 �0.0702 �0.0060
10 6 7 4 0.0827 �0.0688 �0.0057

Kσgπu ≈
1
4

(KSAPA + KSBPB ). (20)

So the total interaction at infinite distance (all occupations are
0.5) can be written as

Eσπ = JSAPA −
1
2

KSAPA (21)

+ JSBPB −
1
2

KSBPB . (22)

So on each of the atoms, the electrons have a Coulomb repul-
sion with the other electron on the atom and half an exchange
interaction with the other electron. The exchange part is not
physical and is simply created by the fact that one describes the
average spinless interaction between two breaking singlet sys-
tems and one does not take the spin coupling of the electrons on
the fragments into account. The actual exchange contribution
should either be �K (fragment triplet states) or +K (fragment
singlet open shell states). The triplet state is the most favor-
able state, so the best course of action is to correct the standard
APSG intergeminal in such a way that it doubles the amount of
exchange interaction between geminals that represent broken
bonds.

It should be noted that the additional exchange interaction
is not a minor addition to the total energy, especially when one
ends up having multiple unpaired electrons on multiple frag-
ments. For example, in case of the N2 molecule, where the
lone N atoms have 3 electrons with the same spin (quartet),
the molecular exchange integral (almost equivalent for all of
the interactions between the 6 active orbitals) has a value of
0.0175 hartree. This represents the value of just 1

2 K (atomic).
Each geminal pair has a mismatch of K (atomic), and there are
3 pairings (σπx/σπy/πxπy). So that means that one is miss-
ing 2∗3∗0.0175 = 0.105 hartree of “static” correlation energy
when one uses the APSG functional. This indicates that it is
mandatory to augment the APSG functional with a multibond
dissociation exchange correction.

IV. IMPROVED GEMINAL FUNCTIONALS

We will now generate new DMFT functionals using the
knowledge we have just gained. In principle, it would be
best to fully reproduce all 2RDM elements faithfully since
this would surely generate a correct description of the ground
state, and it is generally better for TDDMFT (Time Dependent
Density Matrix Functional Theory) excitation calculations as
well. However, the microscopic details are just too numerous
to handle individually, and it is very unlikely that we will be

TABLE VIII. Integrals (hartree) and 2RDM elements for the intergeminal
interactions between the 4 major geminals in equilibrium N2. Note that the
interactions between orbitals 7 and 9 and all non-π orbitals are not shown due
to the fact that they are symmetrically equivalent to the respective interactions
between the other π orbitals (6 and 8) and the non-π orbitals.

Classification A(1) B(1) C(2) D(2) Integral 2RDM Product

Non-JKL 9 6 8 7 0.0173 0.0828 0.0014
Non-JKL 9 7 8 6 0.1454 �0.3536 �0.0514
Non-JKL 9 8 7 6 0.0215 �0.1326 �0.0028
J 7 7 6 6 0.5329 3.7072 1.9757
J 8 8 7 7 0.5496 0.1246 0.0685
J 9 9 8 8 0.5908 0.0270 0.0159
K/L 7 6 7 6 0.0232 �1.8315 �0.0426
K/L 8 7 8 7 0.0173 �0.0992 �0.0017
K/L 9 8 9 8 0.0256 0.0137 0.0004

Non-JKL 11 5 8 6 �0.0746 0.1289 �0.0096
Non-JKL 11 6 8 5 �0.0102 �0.0317 0.0003
Non-JKL 11 8 6 5 �0.0197 0.0518 �0.0010
J 6 6 5 5 0.4954 3.7626 1.8638
J 8 8 5 5 0.5451 0.1320 0.0719
J 11 11 6 6 0.4122 0.0245 0.0101
J 11 11 8 8 0.4442 0.0040 0.0018
K/L 6 5 6 5 0.0429 �1.8603 �0.0797
K/L 8 5 8 5 0.0797 �0.1626 �0.0130
K/L 11 6 11 6 0.0160 �0.0269 �0.0004
K/L 11 8 11 8 0.0205 0.0058 0.0001

Non-JKL 10 4 8 6 �0.1095 0.1764 �0.0193
Non-JKL 10 6 8 4 �0.0009 �0.1159 0.0001
Non-JKL 10 8 6 4 �0.0092 0.0464 �0.0004
J 6 6 4 4 0.5212 3.7713 1.9655
J 8 8 4 4 0.5595 0.1403 0.0785
J 10 10 6 6 0.6232 0.0352 0.0219
J 10 10 8 8 0.6562 0.0086 0.0056
K/L 6 4 6 4 0.0221 �1.8745 �0.0414
K/L 8 4 8 4 0.0300 �0.1225 �0.0037
K/L 10 6 10 6 0.0337 �0.0413 �0.0014
K/L 10 8 10 8 0.0454 0.0047 0.0002

Non-JKL 11 4 10 5 0.0234 0.0016 0.0000
Non-JKL 11 5 10 4 0.0694 �0.0890 �0.0062
Non-JKL 11 10 5 4 0.0531 �0.0271 �0.0014
J 5 5 4 4 0.5329 3.8445 2.0489
J 10 10 5 5 0.5657 0.0408 0.0231
J 11 11 4 4 0.4362 0.0214 0.0093
J 11 11 10 10 0.4638 0.0018 0.0008
K/L 5 4 5 4 0.1712 �1.9018 �0.3256
K/L 10 5 10 5 0.0448 �0.0477 �0.0021
K/L 11 4 11 4 0.0563 �0.0601 �0.0034
K/L 11 10 11 10 0.0259 0.0027 0.0001

able to reproduce these elements for all situations. So only the
most important and easy to implement terms will be consid-
ered. In Sec. III, we have seen that the geminal structure was
clearly present in all systems. So it makes sense to use the
standard APSG functional as the basis for our new functional,
as has been the case for almost all new DMFT functionals
that have been developed in the last couple of years. With
the APSG functional comes the dilemma of the choice of the
set of one-electron orbitals for each geminal. In the analysis,
we have shown that one could easily pair a strongly occupied
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TABLE IX. Integrals (hartree) and 2RDM elements for the intrageminal
interactions of the 4 major geminals in equilibrium N2.

Classification A(1) B(1) C(2) D(2) Integral 2RDM Product

Diagonal 6 6 6 6 0.5794 0.9379 0.5434
Diagonal 8 8 8 8 0.6421 0.0203 0.0131
J 8 8 6 6 0.5925 0.0583 0.0346
K/L 8 6 8 6 0.1800 �0.2346 �0.0422
One electron 6 6 �8.0705
One electron 8 8 �8.2086

Diagonal 5 5 5 5 0.5328 0.9647 0.5140
Diagonal 11 11 11 11 0.3760 0.0016 0.0006
J 11 11 5 5 0.4330 0.0189 0.0082
K/L 11 5 11 5 0.0674 �0.0465 �0.0031
One electron 5 5 �7.6594
One electron 11 11 �5.5017

Diagonal 4 4 4 4 0.5731 0.9665 0.5539
Diagonal 10 10 10 10 0.7909 0.0027 0.0021
J 10 10 4 4 0.6344 0.0277 0.0176
K/L 10 4 10 4 0.1197 �0.0685 �0.0082
One electron 4 4 �8.0619
One electron 10 10 �8.5733

TABLE X. Largest absolute non-JKL contributions to the energy (hartree)
for dissociated N2.

A(1) B(1) C(2) D(2) Integral 2RDM Product

9 8 7 6 0.0176 �1.2886 �0.0227
10 8 7 5 �0.0177 1.2782 �0.0227
10 9 6 5 �0.0177 1.2782 �0.0227
9 7 8 6 0.0175 �1.2883 �0.0226
10 7 8 5 �0.0174 1.2767 �0.0222
10 6 9 5 �0.0174 1.2767 �0.0222

orbital with a single weakly occupied orbital and that an addi-
tional orbital could be added in case a geminal describes a
broken bond. One could in principle use a different number of
orbitals per set for different distances. However, the most sim-
ple PP space (2 orbitals per geminal) is used since this makes
it less ambiguous to compare the functionals with CASSCF
calculations along the entire dissociation coordinate.

The analysis of Sec. III has shown us that one should add
two major corrections to the APSG functionals, both of which
describe intergeminal correlation. The first correction adds the
missing intergeminal dynamical correlation in a physical dis-
persive non-JKL multipole-multipole like way. The second
correction fixes the incorrect exchange interaction on the frag-
ments that occurs between unpaired electrons when multiple
bonds are broken.

A. Intergeminal dynamical correlation

We will begin by generating a functional that contains
the first correction. This functional will be called ELS-
D(ynamical) since it extends the Löwdin Shull/Hartree-Fock
description of the APSG functional by adding dynamical
intergeminal correlation. The electron-electron interaction
energy of this functional is given by

WELS−D = WAPSG−NO +
1
2

∑
Sg

∑
Sh,Sg

FD(ni, na, njnb)Dia,jb,

i, a ∈ Sg; j, b ∈ Sh, (23)

where Dia,jb is given by Eq. (17) and FD is the functional
prefactor. We have not been able to elucidate the occupation
number dependence of the 2RDM elements in our analysis, and
it is very unlikely that we will be able find it by using some
model wave function. So we will base the occupation depen-
dence on physical constraints and our empirical knowledge of
how DMFT functionals work. One of the first constraints that
can be applied from a 2RDM symmetry point of view is that
FD should be symmetrical with respect to geminal set inter-
changes (coordinate swap) and orbital interchanges within a
set (swapping of complex stars). We have seen that the entire
interaction disappears when one of the geminals describes a
broken bond, so FD should contain factors that go to 0 when
the respective geminal describes bond breaking. Finally, a
concrete function of the ONs has to be chosen. In DMFT,
there are two commonly used power factors: the linear prod-
uct of occupation numbers and the square root of this product.
The first one is used for HF like interactions, while the sec-
ond one is used for the description of correlation. Since we
are describing correlation, the second form will be selected
(we will use 4 occupation numbers here instead of the usual
2 since we are working with 4 different orbitals). If one takes
all of these restrictions into consideration, one arrives at the
following expression for FD:

FD(ni, na, nj, nb) = 8fiajbPd(ni · na)Pd(nj · nb)
√

ninanjnb, (24)

where f iajb is the phase factor that ensures that the FD(ni, na,
njnb)Dia,jb product gives a negative (energy lowering) contri-
bution to W. This phase factor is required since the signs of
the orbitals (phases) determine the sign of the integral, and this
leaves us with an inadequate amount of parameters to ensure
that the interaction is always negative for many geminal sys-
tems. In the case of CI calculations, one would be able to
select the correct sign by simply changing the sign of the CI
coefficient. The factor of 8 is present due to 2RDM symmetry
considerations (see above). The Padé approximant Pd is given
by

Pd(x) = α

(
1 −

βx2

1 + βx2

)
. (25)

This approximant goes to zero when the product of occupations
x is at its largest; this occurs when both of the occupation num-
bers belonging to the same geminal are close to half occupancy.
The “point” at which the Padé approximants start quencing the
2RDM elements is regulated by the parameter β. The Padé
approximant also contains a prefactor scaling parameter α.
One could in principle try to choose this parameter in such
a way that it effectively absorbs all missing correlation, even
if it means that the physics is completely eschewed. To avoid
this, one should take a look at the value of this parameter if
one tries to generate the CI 2RDM values when using the CI
NO occupation numbers. This yields an acceptable value of
around 1.1-1.5 for α and will serve as a boundary condition
for our parameter optimization. Before we look at the opti-
mzation and calculation results, we will build a functional that
can also fix the multibond dissociation problem.
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B. Taking care of multibond breaking

As we have seen in our analysis, the standard APSG
functional is not able to describe multibond breaking cor-
rectly because it is missing half of the exchange between the
unpaired electrons, assuming that all of the unpaired electrons
have the same spin direction; i.e., the fragments are in a high
spin configuration. CI calculations fix this exchange by using
a set of non-JKL integrals that have the same value as the
intergeminal exchange integrals at the dissociation limit while
still maintaining the correct singlet state of the total system.46

No correction is needed in case one is at the equilibrium dis-
tance. In case of intermediate distances, it will be a bit harder
to describe this interaction faithfully due to the fact that the
various non-JKL 2RDM elements and their respective inte-
grals act as distinct entities at these distances. One could use
an unrestricted calculation to solve this problem;47 however,
unrestricted DMFT calculations are still in their infancy.48

It is also more appealing to avoid the arbitrariness and loss

of proper state and spin symmetry of unrestricted treatments.
Instead, we will use the most simple closed shell approach pos-
sible to this problem: an exchange (K) only correction is added
to the ELS-D functional. We know the behavior of the equi-
librium and dissociation limits; the intermediate behavior will
be modelled by parametrization. The functional will be des-
ignated as ELS-D-M(ultibond) and is given by the following
expression:

WELS−D−M = WELS−D +
∑
Sg

∑
Sh,Sg

∑
i∈Sg

∑
j∈Sh

FM (ni, nj)Kij, (26)

where FM (ni, nj) is the functional factor that we are going
to choose and optimize. Just like for the dynamical corre-
lation case, we do not really have a simple wave function
form that we can exploit. We do however have an excellent
DMFT base factor that was not mentioned in Sec. IV A:
the symmetrical occupation-hole product ni(1 � ni)nj(1 � nj).
The square root of this product was first used by Csanyi and

FIG. 2. Potential energy curves for CH4 and NH3 (single
bond stretching). (a) CH4. (b) NH3.
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Arias in their corrected-Hartree-Fock functional6 and has since
been used in many other functionals. One would think that
the linear version of this product (with a suitable prefactor)
would be the best choice since it will have a nearly negli-
gible contribution at equilbrium distances and it will have a
full contribution in case both orbitals have half occupation.
However, trial calculations have shown that this only works
very well for equilibrium distance and the dissociation limit,
but it fails to generate an adequate amount in the intermedi-
ate regime. So we will have to use the square root version
in order to generate a larger contribution in the intermedi-
ate regime. The downside of using this is that it generates a
large amount of unwanted “dynamical” correlation at equi-
librium distance and between non-bond breaking geminals at
larger distances as well. In order to counter this unwanted
correlation, a modulation factor has to be added. If one takes
all of these things into account, one arrives at the following
expression:

FM (ni, nj)

= −Pm(ni(1 − ni))Pm(nj(1 − nj))
√

ni(1 − ni)nj(1 − nj),

(27)

where Pm is the Padé approximant given by

Pm(x) = (1 +
16
γ

)
γx2

1 + γx2
. (28)

The first term ensures normalization to 1 when an orbital’s
occupancy is half, and the second part is the modulation factor
that ensures that the newly added exchange will not be added
to non-bond breaking geminal intergeminal interactions.

C. Tests of the ELS-D-M functional

We will now move on to applying these functionals to our
prototype molecules. The following values were used for the
parameters:α = 1.25, β = 750, and γ = 1500. These values were

FIG. 3. Potential energy curves for H2O and FH (single
bond stretching). (a) H2O. (b) HF.
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FIG. 4. Potential energy curves for N2 and H2O for
multiple bond breaking (symmetrical stretch in H2O).
(a) H2O symmetrical stretch. (b) N2.

handpicked after several grid optimizations were performed
for the target molecules (both in the aug-cc-pVDZ and 6-31G
basis, all potential energy curves shown use the aug-cc-pVDZ
basis). The potential energy curves for single bond breaking
are shown in Figs. 2 and 3, while the potential energy curves
for multibond breaking are shown in Fig. 4. The dissociation
energies are shown in Table XI. The results for the Hartree-
Fock (often truncated due to its extremely poor performance
when bonds are broken), APSG (which reduces to general-
ized valence bond with perfect pairs, GVB-PP ≡ PNOF5, due
to the PP set choice), ELS-D, and ELS-D-M functionals are
shown. The CASSCF (active space uses the same number of
orbitals as there are valence electrons) and MR-CI results are
also depicted. The MR-CI curves simply serve as a reminder of
how much correlation energy is still missing when truncating
the active space. The CASSCF curves effectively serve as the
true benchmark value for the approximate DMFT function-
als that we are using here since they have the same PP active

space. The single bond curves [CH4, NH3, H2O-single-bond
(asymmetric stretch), FH] show similar trends. The ELS-D
and ELS-D-M curves are quite close to the CASSCF curves
and nearly on top of each other due to the lack of multibond
breaking in these systems (Figs. 2 and 3). They generally

TABLE XI. Dissociation energies for various methods in kcal/mol. The dis-
sociation limit is defined as the point where the bond is stretched to 3 times
the equilibrium length (4 times for FH).

HF CI CASSCF APSG ELS-D ELS-D-M

CH4 178.8 112.3 105.8 102.0 113.7 111.2
NH3 190.9 110.7 107.4 96.4 116.0 115.8
H2O 209.9 118.4 119.9 102.3 127.1 124.2
FH 474.0 134.8 138.5 114.4 142.3 141.1
H2O 2b 368.2 218.3 216.8 197.6 236.0 222.7
N2 617.6 202.7 215.5 230.9 283.5 219.3
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overestimate the correlation (compared with CASSCF) by a
small amount in the equilibrium regime (except in the case of
FH), and they underestimate it by a slight amount in the dis-
sociation limit. The net effect is that the dissociation energies
(Table XI) are very close to the CASSCF values. The ASPG
functional treats the equilibrium and dissociated situations not
so uniformly, and it generates relatively less of the correlation
at equilibrium distance. The APSG functional therefore gen-
erates poor dissociation energies (too low) for the NH3, H2O,
and HF molecules.

The multibond curves (N2, H2O-symmetric stretch,
Fig. 4) show the same kind of trends as the single bond curves.
The only difference is related to the dissociation behavior of
the ELS-D functional. It goes to the same dissociation limit
as the APSG functional; this is caused by the fact that there is
very little intergeminal dynamical correlation left to describe
by the remaining two non-bond broken geminals. Furthermore
the ELS-D and ELS-D-M curves now do not coincide in the
dissociation limit. This is of course caused by the fact that
the ELS-D functional does not have a multibond dissociation
correction. In case of H2O, only a single unpaired interaction
has to be fixed, while a total of 6 unpaired interactions have
to be corrected (3 per atom) for N2. This explains the larger
absolute energy difference between ELS-D and ELS-D-M in
case of N2. The ELS-D-M dissociation energy is very close
to the CASSCF value (Table XI), again showing that the new
functional is up to the task. It can be noted that in the case of
N2, the APSG functional happens to have a dissociation energy
that is not extremely far away from the CASSCF value; this
is accidental, and it basically fails to describe a large part of
the physics that is involved in describing the N2 dissociation
curve.

V. CONCLUSIONS

The 2RDM (in the NO basis generated by MR-CI cal-
culations) has been analyzed in this paper for the prototype
molecules CH4, NH3, H2O, FH, and N2. The most impor-
tant finding has been the essential role of dispersion type
terms (non-JKL two-electron integrals) that describe the cor-
relation between electrons in different geminals. Such terms
describe an essential part of the dynamical correlation, namely
the intergeminal attractive multipole-multipole interactions
that arise from simultaneous single excitations on two gemi-
nals. If the distance between the two geminals is large, these
are the well-known dispersion type interactions that give rise
to van der Waals bonding. The essential deficiency of pure
JKL functionals has been recognized for the first time pre-
cisely for the case of van der Waals bonding, in an anal-
ysis of the prototype He2 system.14 Naturally, such disper-
sion type interactions also occur between geminals in general
molecules, and when the distance between the geminals is
shorter than the typical van der Waals distance, the ener-
getic effects of this dispersion type of electron correlation
become much larger and have to be taken into account for
reliable bond energies. The insights obtained have been used
to generate new DMFT functionals. Benchmark CASSCF cal-
culations have been performed, which have the same num-
ber of active orbitals as the DMFT calculations (the PP set,

i.e., equal to the number of valence electrons). The most
advanced version of our functionals, ELS-D-M, is able, by
incorporating the non-JKL terms in the functional, to repro-
duce the benchmark CASSCF potential energy curves. Of
course these terms increase the computational effort. However,
in our perfect pair scenario, only a single integral is required
between each pair of geminals, reducing these additional costs
significantly.

We also note that this is the first time that a DMFT
functional has been able to produce all the essential physics
for the multibond N2 system. This was accomplished by
adding a correction that ensures that, after the breaking of
bonds, unpaired electrons on fragments feel the appropriate
amount of exchange interaction (for a high-spin configuration).
This multibond correction is only an exchange correction,
so JKL functionals can easily incorporate this correction for
ground state calculations. Both of these corrections are pair-
wise between geminals, so it is expected that the ELS-D-M
functional is capable of providing a similar kind of perfor-
mance for larger systems. However, the multibond correction
might generate an incorrect amount of exchange compensa-
tion in case one of the fragments is not correctly described by
a high spin configuration. The geminal nature of the functional
could potentially generate some problems for delocalized sys-
tems. It is known from valence bond calculations that 2 orbital
geminal systems are incapable of generating the correct equi-
librium structure for benzene; the correct structure is obtained
when enough intergeminal corrective terms are added.49 The
ELS-D-M functional does use additional correlation terms.
However, some terms might still be missing, and the interaction
strength (parameters) of the terms that we do use might favor a
symmetry broken geometry. This will have to be investigated
in the future.

The ELS-D and ELS-D-M functionals were able to
increase the dynamical correlation energy from the 50%–
60% (of the benchmark CASSCF correlation energy) generally
obtained by APSG-PP to virtually all of the dynamical corre-
lation energy obtained by the PP space CASSCF calculations.
Still, the latter usually amounts to only 45%-50% of the total
dynamical correlation energy as obtained by the MR-CI cal-
culations. If we want to obtain a larger percentage of the total
dynamical correlation energy, we need to incorporate more
orbitals in the geminals in order to obtain more dynamical
correlation per geminal and more intergeminal correlation
energy by adding additional (dispersive) terms that contain
these orbitals; see the discussion in Ref. 50. Another way of
incorporating the effect of additional orbitals is to resort to
perturbative treatments.
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