150 research outputs found

    Uncovering Trait Associations Resulting in Maximal Seed Yield in Winter and Spring Oilseed Rape

    Get PDF
    Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding

    Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications

    Full text link
    The periodontal biomechanical environment is very difficult to investigate. By the complex geometry and composition of the periodontal ligament, its mechanical behavior is very dependent on the type of loading (compressive vs. tensile loading; static vs. cyclic loading; uniaxial vs. multiaxial) and the location around the root (cervical, middle, or apical). These different aspects of the periodontal ligament make it difficult to develop a functional biomaterial to treat periodontal attachment due to periodontal diseases. This review aims to describe the structural and biomechanical properties of the periodontal ligament. Particular importance is placed in the close interrelationship that exists between structure and biomechanics: the periodontal ligament structural organization is specific to its biomechanical environment, and its biomechanical properties are specific to its structural arrangement. This balance between structure and biomechanics can be explained by a mechanosensitive periodontal cellular activity. These specifications have to be considered in the further tissue engineering strategies for the development of an efficient biomaterial for periodontal tissues regeneration

    Temperature dependence of surface reconstructions of Au on Pd(110)

    Full text link
    Surface reconstructions of Au film on Pd(110) substrate are studied using a local Einstein approximation to quasiharmonic theory with the Sutton-Chen interatomic potential. Temperature dependent surface free energies for different coverages and surface structures are calculated. Experimentally observed transformations from (1×1)(1\times1) to (1×2)(1 \times 2) and (1×3)(1 \times 3) structures can be explained in the framework of this model. Also conditions for Stranski-Krastanov growth mode are found to comply with experiments. The domain of validity of the model neglecting mixing entropy is analyzed.Comment: 7 pages, REVTeX two-column format, 3 postscript figures available on request from [email protected] To appear in Phys. Rev. Letter

    The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study

    Get PDF
    Abstract Background: Development of noninvasive molecular assays to improve disease diagnosis and patient monitoring is a critical need. In renal transplantation, acute rejection (AR) increases the risk for chronic graft injury and failure. Noninvasive diagnostic assays to improve current late and nonspecific diagnosis of rejection are needed. We sought to develop a test using a simple blood gene expression assay to detect patients at high risk for AR. Methods and Findings: We developed a novel correlation-based algorithm by step-wise analysis of gene expression data in 558 blood samples from 436 renal transplant patients collected across eight transplant centers in the US, Mexico, and Spain between 5 February 2005 and 15 December 2012 in the Assessment of Acute Rejection in Renal Transplantation (AART)study. Gene expression was assessed by quantitative real-time PCR (QPCR) in one center. A 17-gene set the Kidney Solid Organ Response Test (kSORT) was selected in 143 samples for AR classification using discriminant analysis (area under the receiver operating characteristic curve [AUC] = 0.94; 95% CI 0.91-0.98), validated in 124 independent samples (AUC = 0.95; 95% CI 0.88-1.0) and evaluated for AR prediction in 191 serial samples, where it predicted AR up to 3 mo prior to detection by the current gold standard (biopsy). A novel reference-based algorithm (using 13 12-gene models) was developed in 100 independent samples to provide a numerical AR risk score, to classify patients as high risk versus low risk for AR. kSORT was able to detect AR in blood independent of age, time post-transplantation, and sample source without additional data normalization; AUC = 0.93 (95% CI 0.86-0.99). Further validation of kSORT is planned in prospective clinical observational and interventional trials. Conclusions: The kSORT blood QPCR assay is a noninvasive tool to detect high risk of AR of renal transplants

    Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    Get PDF
    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu2+ addition to the external bath. Cu2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains — capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug–protein interactions

    Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber

    Get PDF
    Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions
    • …
    corecore