Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications

Abstract

The periodontal biomechanical environment is very difficult to investigate. By the complex geometry and composition of the periodontal ligament, its mechanical behavior is very dependent on the type of loading (compressive vs. tensile loading; static vs. cyclic loading; uniaxial vs. multiaxial) and the location around the root (cervical, middle, or apical). These different aspects of the periodontal ligament make it difficult to develop a functional biomaterial to treat periodontal attachment due to periodontal diseases. This review aims to describe the structural and biomechanical properties of the periodontal ligament. Particular importance is placed in the close interrelationship that exists between structure and biomechanics: the periodontal ligament structural organization is specific to its biomechanical environment, and its biomechanical properties are specific to its structural arrangement. This balance between structure and biomechanics can be explained by a mechanosensitive periodontal cellular activity. These specifications have to be considered in the further tissue engineering strategies for the development of an efficient biomaterial for periodontal tissues regeneration

    Similar works

    Full text

    thumbnail-image

    Available Versions