24 research outputs found

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Evaluation of gadolinium's action on water Cherenkov detector systems with EGADS

    Get PDF
    Used for both proton decay searches and neutrino physics, large water Cherenkov (WC) detectors have been very successful tools in particle physics. They are notable for their large masses and charged particle detection capabilities. While current WC detectors reconstruct charged particle tracks over a wide energy range, they cannot efficiently detect neutrons. Gadolinium (Gd) has the largest thermal neutron capture cross section of all stable nuclei and produces an 8 MeV gamma cascade that can be detected with high efficiency. Because of the many new physics opportunities that neutron tagging with a Gd salt dissolved in water would open up, a large-scale R&D program called EGADS was established to demonstrate this technique's feasibility. EGADS features all the components of a WC detector, chiefly a 200-ton stainless steel water tank furnished with 240 photo-detectors, DAQ, and a water system that removes all impurities in water while keeping Gd in solution. In this paper we discuss the milestones towards demonstrating the feasibility of this novel technique, and the features of EGADS in detail

    Sensitivity of super-kamiokande with gadolinium to low energy antineutrinos from pre-supernova emission

    Get PDF
    Supernova detection is a major objective of the Super-Kamiokande (SK) experiment. In the next stage of SK (SK-Gd), gadolinium (Gd) sulfate will be added to the detector, which will improve the ability of the detector to identify neutrons. A core-collapse supernova (CCSN) will be preceded by an increasing flux of neutrinos and antineutrinos, from thermal and weak nuclear processes in the star, over a timescale of hours; some of which may be detected at SK-Gd. This could provide an early warning of an imminent CCSN, hours earlier than the detection of the neutrinos from core collapse. Electron antineutrino detection will rely on inverse beta decay events below the usual analysis energy threshold of SK, so Gd loading is vital to reduce backgrounds while maximizing detection efficiency. Assuming normal neutrino mass ordering, more than 200 events could be detected in the final 12 hr before core collapse for a 15–25 solar mass star at around 200 pc, which is representative of the nearest red supergiant to Earth, α-Ori (Betelgeuse). At a statistical false alarm rate of 1 per century, detection could be up to 10 hr before core collapse, and a pre-supernova star could be detected by SK-Gd up to 600 pc away. A pre-supernova alert could be provided to the astrophysics community following gadolinium loading

    Search for neutrinos in coincidence with gravitational wave events from the LIGO–Virgo O3a observing run with the Super-Kamiokande detector

    Get PDF
    The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves detected by the LIGO–Virgo Collaboration (LVC). Both low-energy (7–100 MeV) and high-energy (0.1–105 GeV) samples were analyzed in order to cover a very wide neutrino spectrum. Follow-ups of 36 (out of 39) gravitational waves reported in the GWTC-2 catalog were examined; no significant excess above the background was observed, with 10 (24) observed neutrinos compared with 4.8 (25.0) expected events in the high-energy (low-energy) samples. A statistical approach was used to compute the significance of potential coincidences. For each observation, p-values were estimated using neutrino direction and LVC sky map; the most significant event (GW190602_175927) is associated with a post-trial p-value of 7.8% (1.4σ). Additionally, flux limits were computed independently for each sample and by combining the samples. The energy emitted as neutrinos by the identified gravitational wave sources was constrained, both for given flavors and for all flavors assuming equipartition between the different flavors, independently for each trigger and by combining sources of the same nature

    Sensitivity of Super-Kamiokande with gadolinium to low energy antineutrinos from pre-supernova emission

    No full text
    Supernova detection is a major objective of the Super-Kamiokande (SK) experiment. In the next stage of SK (SK-Gd), gadolinium (Gd) sulfate will be added to the detector, which will improve the ability of the detector to identify neutrons. A core-collapse supernova (CCSN) will be preceded by an increasing flux of neutrinos and antineutrinos, from thermal and weak nuclear processes in the star, over a timescale of hours; some of which may be detected at SK-Gd. This could provide an early warning of an imminent CCSN, hours earlier than the detection of the neutrinos from core collapse. Electron antineutrino detection will rely on inverse beta decay events below the usual analysis energy threshold of SK, so Gd loading is vital to reduce backgrounds while maximizing detection efficiency. Assuming normal neutrino mass ordering, more than 200 events could be detected in the final 12 hr before core collapse for a 15–25 solar mass star at around 200 pc, which is representative of the nearest red supergiant to Earth, α-Ori (Betelgeuse). At a statistical false alarm rate of 1 per century, detection could be up to 10 hr before core collapse, and a pre-supernova star could be detected by SK-Gd up to 600 pc away. A pre-supernova alert could be provided to the astrophysics community following gadolinium loading
    corecore