96 research outputs found

    Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review

    Get PDF
    Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures. This phase resulted in advances in MSCs processing and the hypothesis that MSC-tissue supportive functions may be prevailing their differentiation plasticity, broadening the spectrum of MSCs therapeutic potential far beyond their lineage-restricted commitments. Consequently, an increasing number of studies have been conducted for a variety of clinical indications, revealing additional challenges and suggesting that MSCs are still lagging behind for a solid clinical translation. For this reason, our aim was to dissect the current challenges in the development of still promising cell types that, after more than half a century, still need to reach their maturity. Stem Cells Translational Medicine 2019;8:1135–1148

    Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence

    Get PDF
    Emerging evidence suggests that a small subpopulation of cancer stem cells (CSCs) is responsible for initiation, progression, and metastasis cascade in tumors. CSCs share characteristics with normal stem cells, i.e., self-renewal and differentiation potential, suggesting that they can drive cancer progression. Consequently, targeting CSCs to prevent tumor growth or regrowth might offer a chance to lead the fight against cancer. CSCs create their niche, a specific area within tissue with a unique microenvironment that sustains their vital functions. Interactions between CSCs and their niches play a critical role in regulating CSCs’ self-renewal and tumorigenesis. Differences observed in the frequency of CSCs, due to the phenotypic plasticity of many cancer cells, remain a challenge in cancer therapeutics, since CSCs can modulate their transcriptional activities into a more stem-like state to protect themselves from destruction. This plasticity represents an essential step for future therapeutic approaches. Regarding self-renewal, CSCs are modulated by the same molecular pathways found in normal stem cells, such as Wnt/β-catenin signaling, Notch signaling, and Hedgehog signaling. Another key characteristic of CSCs is their resistance to standard chemotherapy and radiotherapy treatments, due to their capacity to rest in a quiescent state. This review will analyze the primary mechanisms involved in CSC tumorigenesis, with particular attention to the roles of CSCs in tumor progression in benign and malignant diseases; and will examine future perspectives on the identification of new markers to better control tumorigenesis, as well as dissecting the metastasis process

    Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors

    Get PDF
    Background: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation. Methods: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors. In this study, we investigated the effect of HOXB7 overexpression on the ex vivo features of adipose mesenchymal progenitors (AD-MSC). Results: HOXB7 increased AD-MSC proliferation potential, reduced senescence, and improved chondrogenesis together with a significant increase of basic fibroblast growth factor (bFGF) secretion. Conclusion: While further investigations and in vivo models shall be applied for better understanding, these data suggest that modulation of HOXB7 may be a strategy for innovative tissue regeneration applications

    Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance.

    Get PDF
    Autologous fat transfer (AFT) is a procedure for adipose tissue (AT) repair after trauma, burns, post-tumor resections and lipodystrophies still negatively impacted by the lack of graft persistence. The reasons behind this poor outcome are unclear and seem to involve damages in either harvested/transplanted mature adipocytes or on their mesenchymal progenitors, namely adipose stromal/stem cells (ASC), and due to post-transplant AT apoptosis and involution. A rabbit subcutaneous AT regeneration model was here developed to first evaluate graft quality at different times after implant focusing on related parameters, such as necrosis and vasculogenesis. Standard AFT was compared with a strategy where purified autologous ASC, combined with hyaluronic acid (HA), assisted AFT. Five million of autologous ex vivo isolated CD29+, CD90+, CD49e+ ASC, loaded into HA, enriched 1 ml of AT generating an early significant protective effect in reducing AFT necrosis and increasing vasculogenesis with a preservation of transplanted AT architecture. This beneficial impact of ASC assisted AFT was then confirmed at three months with a robust lipopreservation and no signs of cellular transformation. By a novel ASC assisted AFT approach we ensure a reduction in early cell death favoring an enduring graft performance possibly for a more stable benefit in patients

    Autologous Marrow Mesenchymal Stem Cell Driving Bone Regeneration in a Rabbit Model of Femoral Head Osteonecrosis

    Get PDF
    Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH. Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to challenge an autologous MSC-based treatment. ON has been originally induced by the synergic combination of surgery and steroid administration. Autologous BM-MSCs were then implanted in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs, isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles, and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into the clinical settings

    Human Adipose Mesenchymal Stromal/Stem Cells Improve Fat Transplantation Performance

    Get PDF
    The resorption rate of autologous fat transfer (AFT) is 40–60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation. We report a xenograft model of adipose tissue engineering in which NOD/SCID mice underwent AFT with/without human autologous AD-MSCs and were monitored for 180 days (d). The effect of AD-MSCs on AFT grafting was also monitored by evaluating the expression of CD31 and F4/80 markers. Green fluorescent protein-positive AD-MSCs (AD-MSC-GFP) were detected in fibroblastoid cells 7 days after transplantation and in mature adipocytes at 60 days, indicating both persistence and differentiation of the implanted cells. This evidence also correlated with the persistence of a higher graft weight in AFT-AD-MSC compared to AFT alone treated mice. An observation up to 180 d revealed a lower resorption rate and reduced lipidic cyst formation in the AFT-AD-MSC group, suggesting a long-term action of AD-MSCs in support of AFT performance and an anti-inflammatory/proangiogenic activity. Together, these data indicate the protective role of adipose progenitors in autologous AFT tissue resorption

    Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested

    NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus

    Get PDF
    The PIDDosome (PIDD–RAIDD–caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2–dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function

    The estrogen and c-Myc target gene HSPC111 is over-expressed in breast cancer and associated with poor patient outcome

    Get PDF
    Introduction: Estrogens play a pivotal role in the initiation and progression of breast cancer. The genes that mediate these processes are not fully defined, but potentially include the known mammary oncogene MYC. Characterization of estrogen-target genes may help to elucidate further the mechanisms of estrogen-induced mitogenesis and endocrine resistance.Methods: We used a transcript profiling approach to identify targets of estrogen and c-Myc in breast cancer cells. One previously uncharacterized gene, namely HBV pre-S2 trans-regulated protein 3 (HSPC111), was acutely upregulated after estrogen treatment or inducible expression of c-Myc, and was selected for further functional analysis using over-expression and knock-down strategies. HSPC111 expression was also analyzed in relation to MYC expression and outcome in primary breast carcinomas and published gene expression datasets.Results: Pretreatment of cells with c-Myc small interfering RNA abrogated estrogen induction of HSPC111, identifying HSPC111 as a potential c-Myc target gene. This was confirmed by the demonstration of two functional E-box motifs upstream of the transcription start site. HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels. HSPC111 is present in a large, RNA-dependent nucleolar complex, suggesting a possible role in ribosomal biosynthesis. Neither over-expression or small interfering RNA knock-down of HSPC111 affected cell proliferation rates or sensitivity to estrogen/antiestrogen treatment. However, high expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets.Conclusion: These data identify HSPC111 as an estrogen and c-Myc target gene that is over-expressed in breast cancer and is associated with an adverse patient outcome

    Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency

    Get PDF
    Nucleophosmin (NPM) is a multifunctional nuclear phosphoprotein and a histone chaperone implicated in chromatin organization and transcription control. Oncogenic Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). In the infected host cell KSHV displays two modes of infection, the latency and productive viral replication phases, involving extensive viral DNA replication and gene expression. A sustained balance between latency and reactivation to the productive infection state is essential for viral persistence and KSHV pathogenesis. Our study demonstrates that the KSHV v-cyclin and cellular CDK6 kinase phosphorylate NPM on threonine 199 (Thr199) in de novo and naturally KSHV-infected cells and that NPM is phosphorylated to the same site in primary KS tumors. Furthermore, v-cyclin-mediated phosphorylation of NPM engages the interaction between NPM and the latency-associated nuclear antigen LANA, a KSHV-encoded repressor of viral lytic replication. Strikingly, depletion of NPM in PEL cells leads to viral reactivation, and production of new infectious virus particles. Moreover, the phosphorylation of NPM negatively correlates with the level of spontaneous viral reactivation in PEL cells. This work demonstrates that NPM is a critical regulator of KSHV latency via functional interactions with v-cyclin and LANA
    • …
    corecore