2,957 research outputs found

    Characterizing the variation of propagation constants in multicore fibre

    Get PDF
    We demonstrate a numerical technique that can evaluate the core-to-core variations in propagation constant in multicore fibre. Using a Markov Chain Monte Carlo process, we replicate the interference patterns of light that has coupled between the cores during propagation. We describe the algorithm and verify its operation by successfully reconstructing target propagation constants in a fictional fibre. Then we carry out a reconstruction of the propagation constants in a real fibre containing 37 single-mode cores. We find that the range of fractional propagation constant variation across the cores is approximately ±2×105\pm2 \times 10^{-5}.Comment: 17 pages; preprint format; 5 figures. Submitted to Optics Expres

    UTEP's AGENT Architecture

    Get PDF

    ATLAS Cooling Systems: LCS v.2 Full Scale Test

    Get PDF

    Historical Review and Update of Surgical Treatment for Corneal Endothelial Diseases

    Get PDF
    The cornea remains in a state of deturgescence, maintained by endothelial cell Na+/K+ ATPase and by tight junctions between endothelial cells that limit entrance of fluid into the stroma. Fuchs' endothelial corneal dystrophy (FECD) was initially described by Fuchs in 1910 as a combination of epithelial and stromal edema in older patients. It manifests as bilateral, albeit asymmetric, central corneal guttae, corneal edema, and reduced vision. When edema is severe, the corneal epithelium can detach from its basement membrane, creating painful bullae on the anterior surface of the cornea. The course of this dystrophy can be further accelerated after intraocular surgery, specifically cataract extraction. Pseudophakic bullous keratopathy (PBK) is endothelial cell loss caused by surgery in the anterior chamber. If the corneal endothelium is damaged during surgery, the same spectrum of symptoms as found in FECD can develop. In the nineteenth century, penetrating keratoplasty was the only surgical procedure available for isolated endothelial disease. In the 1960s, Dr. José Barraquer described a method of endothelial keratoplasty using an anterior approach via laser-assisted in situ keratomileusis (LASIK) flap. In 1999, Melles and colleague described their technique of posterior lamellar keratoplasty. Later, Melles et al. started to change host dissection using simple "descemetorhexis" in a procedure known as Descemet's stripping endothelial keratoplasty. Following the widespread adoption of Descemet's stripping automated endothelial keratoplasty, the Melles group revisited selective Descemet's membrane transplantation and reported the results of a new procedure, Descemet's membrane endothelial keratoplasty (DMEK). Recently, some eye banks have experimented with the preparation of DMEK/Descemet's membrane automated endothelial keratoplasty donor tissue that may help the surgeon avoid the risk of tissue loss during the stromal separation step. Recently, the authors described a new bimanual technique for insertion and positioning of endothelium-Descemet membrane grafts in DMEK

    Semiquantitative interpretation of anticardiolipin and antiβ2glycoprotein I antibodies measured with various analytical platforms: communication from the ISTH SSC subcommittee on Lupus Anticoagulant/Antiphospholipid antibodies

    Get PDF
    Background Antiβ2glycoprotein I (aβ2GPI) and anticardiolipin (aCL) IgG/IgM show differences in positive/negative agreement and titers between solid phase platforms. Method specific semiquantitative categorization of titers could improve and harmonize the interpretation across platforms. Aim To evaluate the traditionally 40/80 units thresholds used for aCL and aβ2GPI for categorization into moderate/high positivity with different analytical systems, and to compare with alternative thresholds. Material and methods aCL and aβ2GPI thresholds were calculated for two automated systems (chemiluminescent immunoassay (CLIA) and multiplex flow immunoassay (MFI)) by ROC-curve analysis on 1108 patient samples, including patients with and without APS, and confirmed on a second population (n=279). Alternatively, regression analysis on diluted standard material was applied to identify thresholds. Thresholds were compared to 40/80 threshold measured by an enzyme linked immunosorbent assay (ELISA). Additionally, likelihood ratios (LR) were calculated. Results Threshold levels of 40/80 units show poor agreement between ELISA and automated platforms for classification into low/moderate/high positivity, especially for aCL/aβ2GPI IgG. Agreement for semiquantitative interpretation of aPL IgG between ELISA and CLIA/MFI improves with alternative thresholds. LR for aPL IgG increase for thrombotic and obstetric APS based on 40/80 thresholds for ELISA and adapted thresholds for the other systems, but not for IgM. Conclusion Use of 40/80 units as medium/high thresholds is acceptable for aCL/aβ2GPI IgG ELISA, but not for CLIA and MFI. Alternative semiquantitative thresholds for non-ELISA platforms can be determined by a clinical approach or by using monoclonal antibodies. Semiquantitative reporting of aPL IgM has less impact on increasing probability for APS

    Modal noise mitigation in a photonic lantern fed near-IR spectrograph

    Get PDF
    Recently we have demonstrated the potential of a hybrid astrophotonic device, consisting of a multi-core fiber photonic lantern and a 3D waveguide reformatting component, to efficiently reformat the multimode point spread function of a telescope to a diffracted limited pseudo-slit. Here, we report on an investigation into the potential of this device to mitigate modal noise-one of the main hurdles of multi-mode fiber-fed spectrographs. The modal noise performance of the photonic reformatter and other fiber feeds was assessed using a bench-Top spectrograph based on an echelle grating. In a first method of modal noise quantification, we used broadband light as the input, and assessed the modal noise performance based on the variations in the normalized spectrum as the input coupling to the fiber feed is varied. In a second method, we passed the broadband light through an etalon to generate a source with spectrally narrow peaks. We then used the spectral stability of these peaks as the input coupling to the fiber feed was varied as a proxy for the modal noise. Using both of these approaches we found that the photonic reformatter could significantly reduce modal noise compared to the multi-mode fiber feed, demonstrating the potential of photonic reformatters to mitigate modal noise for applications such as near-IR radial velocity measurements of M-dwarf stars. </p

    UTEP's AGENT Architecture

    Get PDF
    corecore